
Eric Roberts and Jerry Cain Handout #42
CS 106J May 24, 2017

Data-Driven Programs

Data-Driven Programs

Eric Roberts and Jerry Cain
CS 106J

May 24, 2017

Computing and the Counterculture�
Two recent books argue that the personal computing revolution
owes as much to the counterculture of the 1960s as it does to the
technological strength and entrepreneurial spirit of Silicon Valley.

Ted Nelson’s Cyberspace Dreams�
The countercultural vision comes across particularly clearly in the
two-sided book Computer Lib/Dream Machines which was written
by cyberspace visionary Ted Nelson in 1974.

Designing Data Structures
•� When you design a program, one of the first tasks you need to

undertake is understanding how the underlying data structures
fit together and how each level of the data hierarchy can best
be represented.

•� This process is similar to that of decomposing a large problem
into a set of successively simpler subproblems. In the data
domain, the information your program needs to process must
be decomposed into successively simpler data structures until
everything can be represented using a built-in JavaScript
value, such as a number or a string.

•� The tools for data decomposition you have seen so far include
–� Arrays, which implement sequences of values
–� Aggregates, which represent collections of related values
–� Maps, which establish a relationship between keys and values

Exercise: Localization
•� To be successful in our global economy, modern applications

must support a wide variety of languages. The process of
tailoring an application to communicate with users in the
appropriate language is called localization.

•� Suppose you want to be able to specify labels for buttons in
English but would like to design a data structure that converts
those names to the locale, represented as a two-character
abbreviation, such as "fr" for France or "de" for Germany.

•� Design a data structure that stores localized translations for
any number of button labels in any number of localizations.
The idea is that your data structure should allow clients to call
localize(name, locale) with the English version of the
button name and have it return the appropriate translation for
the specified locale.

Data-Driven Programs
•� In most programming languages, data structures are easier to

manipulate than code. As a result, it is often useful to design
applications so that as much of their behavior as possible is
represented as data rather than in the form of methods.
Programs that work this way are said to be data driven.

•� In a data-driven system, the actual program (which is called a
driver) is usually very small. Such driver programs operate in
two phases:

Read data from a file into a suitable internal data structure. 1.
Use the data structure to control the flow of the program. 2.

•� To illustrate the idea of a data-driven system, we’re going to
spend most of this lecture building a programmed-instruction
“teaching machine” of the sort that Ted Nelson discusses
(mostly critically) in Dream Machines.

– 2 –

The Course Data File
In our teaching machine application, the course designer—who is
an expert in the domain of instruction and not necessarily a
programmer—creates a data file that serves as the driver. The
general format of the whole file is shown on the left, and a specific
example of a question and its answers appears on the right.

course

Choosing an Internal Representation
The first step in building the teaching machine is to design a set of
classes that can represent the data and relationships in the file. All
of the relevant data should be accessible from a single structure
that contains all relevant information in a nested series of classes.

TMCourse

questions

title

map number � string

TMQuestion
questionText

answers

map string � number

array of strings

Converting External to Internal Form

Java programming review
1
Would you like help with
int or boolean type?

int: 2
boolean: 10

2
True or false: Integers can
have fractional parts.

true: 3
false: 5

3
No. Floating-point numbers
have fractional parts;
integers do not.
True or false: Integers can
be negative.

true: 5
false: 4

/*
 * Creates a new question containing the text as an array of lines.
 * Clients must add new answer/question pairs by calling addAnswer.
 */

function TMQuestion(text) {
 var answerTable = { };
 return {
 printQuestionText: function() {
 for (var i = 0; i < text.length; i++) {
 console.log(text[i]);
 }
 },
 addAnswer: function(response, nextQuestion) {
 answerTable[response] = nextQuestion;
 },
 lookupAnswer: function(response) {
 return answerTable[response];
 }
 };
}

Code for the TMQuestion Class

/*
 * File: TMCourse.java
 * -------------------
 * This class defines the data structure for a course for use with
 * the TeachingMachine program.
 */

/* Constants */

const MARKER = "-----";

/*
 * Creates a new course for the teaching machine by reading the
 * data from the specified file, which consists of questions and
 * their accepted answers.
 */

function TMCourse(filename) {
 .
 .
 .
}

Code for the TMCourse Class
function TMCourse(filename) {
 var lines = File.readLines(filename);
 if (lines === undefined) return null;
 var nLines = lines.length;
 var title = lines.shift();
 var questions = { };
 var line = lines.shift();
 while (line !== undefined) {
 var qnum = parseInt(line);
 var text = [];
 while (line !== undefined && line !== MARKER) {
 text.push(line);
 line = lines.shift();
 }
 var question = TMQuestion(text);
 line = lines.shift();
 while (line !== undefined && line !== "") {
 var colon = line.indexOf(":");
 var response = line.substring(0, colon).toLowerCase().trim();
 var nextQuestion = parseInt(line.substring(colon + 1).trim());
 question.addAnswer(response, nextQuestion);
 line = lines.shift();
 }
 questions[qnum] = question;
 line = lines.shift();
 }
 return {
 getTitle: function() { return title; },
 getQuestion: function(qnum) { return questions[qnum]; }
 };
}

– 3 –

/*
 * File: TeachingMachine.js
 * ------------------------
 * This program executes a programmed instruction course.
 */

import "TMCourse.js";
import "TMQuestion.js";
import "file";

function TeachingMachine() {
 var callback = function(filename) {
 var course = TMCourse(filename);
 if (course === null) {
 console.log("Can't read that file.");
 console.requestInput("Enter name of course file: ", callback);
 } else {
 stepThroughCourse(course);
 }
 };
 console.requestInput("Enter name of course file: ", callback);
}

Code for TeachingMachine.js function stepThroughCourse(course) {
 var qnum = 1;
 var askQuestion = function() {
 if (qnum === 0) {
 console.log("Done");
 } else {
 var question = course.getQuestion(qnum);
 if (question === undefined) {
 console.log("Missing question " + qnum);
 } else {
 question.printQuestionText();
 console.requestInput(checkAnswer);
 }
 }
 };
 var checkAnswer = function(line) {
 var question = course.getQuestion(qnum);
 var nextQuestion = question.lookupAnswer(line);
 if (nextQuestion === undefined) {
 console.log("I don't understand that response.");
 } else {
 qnum = nextQuestion;
 }
 askQuestion();

 };
 console.log(course.getTitle());
 askQuestion();
}

