
Jerry Cain and Eric Roberts Handout #16
CS 106J April 21, 2017

Interactive Graphics

Interactive Graphics

Jerry Cain and Eric Roberts
CS 106J

April 21, 2017

Review: The Collage Model
•� SJS uses the same graphics model that we have used for the

last decade, which is based on the metaphor of a collage.
•� A collage is similar to a child’s felt board that serves as a

backdrop for colored shapes that stick to the felt surface. As
an example, the following diagram illustrates the process of
adding a blue rectangle and a red oval to a felt board:

•� Note that newer objects can obscure those added earlier. This
layering arrangement is called the stacking order.

The GWindow Class Revisited
The following expanded set of methods are available in the
GWindow class:

Adds the object to the canvas at the front of the stack
Moves the object to (x, y) and then adds it to the canvas
Removes the object from the canvas
Removes all objects from the canvas
Returns the frontmost object at (x, y), or null if none
Returns the width in pixels of the entire canvas
Returns the height in pixels of the entire canvas
Sets the background color of the canvas to c.

add(object)
add(object, x, y)
remove(object)
removeAll()
getElementAt(x, y)
getWidth()
getHeight()
setBackground(c)

The Two Forms of the add Method
•� The add method comes in two forms. The first is simply

add(object);

which adds the object at the location currently stored in its
internal structure. You use this form when you have already
set the coordinates of the object, which usually happens at the
time you create it.

•� The second form is

add(object, x, y);

which first moves the object to the point (x, y) and then adds
it there. This form is useful when you need to determine
some property of the object before you know where to put it.

Methods Common to All GObjects
setLocation(x, y)
move(dx, dy)
movePolar(r, theta)
getX()
getY()
getWidth()
getHeight()
contains(x, y)
setColor(c)
getColor()
scale(sf)
rotate(theta)
sendToFront()
sendToBack()
sendForward()
sendBackward()

Resets the location of the object to the specified point
Moves the object dx and dy pixels from its current position
Moves the object r pixel units in direction theta
Returns the x coordinate of the object
Returns the y coordinate of the object
Returns the horizontal width of the object in pixels
Returns the vertical height of the object in pixels
Returns true if the object contains the specified point
Sets the color of the object to c
Returns the color currently assigned to the object
Scales the shape by the scale factor sf
Rotates the shape counterclockwise by theta degrees
Sends the object to the front of the stacking order
Sends the object to the back of the stacking order
Sends the object forward one position in the stacking order
Sends the object backward one position in the stacking order

Additional Methods for GOval and GRect

setFilled(flag)
isFilled()
setFillColor(c)
getFillColor()

Sets the fill state for the object (false = outlined, true = filled)
Returns the fill state for the object
Sets the color used to fill the interior of the object to c
Returns the fill color

Fillable shapes (GOval and GRect [and later GArc and GPolygon])

setSize(width, height)
setBounds(x, y, width, height)

Sets the dimensions of the object as specified
Sets the location and dimensions together

Resizable shapes (GOval and GRect [and later GImage])

– 2 –

Additional Methods for GLine
setStartPoint(x, y)
setEndPoint(x, y)

Sets the start point without changing the end point
Sets the end point without changing the start point

function LineGeometryExample() {
 var gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 var line = GLine(0, 0, 100, 100);
 gw.add(line);
 line.setLocation(200, 50);
 line.setStartPoint(200, 150);
 line.setEndPoint(300, 50);
}

LineGeometryExample�

function LineGeometryExample() {
 var gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 var line = GLine(0, 0, 100, 100);
 gw.add(line);
 line.setLocation(200, 50);
 line.setStartPoint(200, 150);
 line.setEndPoint(300, 50);
}

The JavaScript Event Model
•� Graphical applications usually make it possible for the user to

control the action of a program by using an input device such
as a mouse. Programs that support this kind of user control
are called interactive programs.

•� User actions such as clicking the mouse are called events.
Programs that respond to events are said to be event-driven.

•� In modern interactive programs, user input doesn’t occur at
predictable times. A running program doesn’t tell the user
when to click the mouse. The user decides when to click the
mouse, and the program responds. Because events are not
controlled by the program, they are said to be asynchronous.

•� In JavaScript program, you write a function that acts as a
listener for a particular event type. When the event occurs,
that listener is called.

The Role of Event Listeners
•� One way to visualize the role of a listener is to imagine that

you have access to one of Fred and George Weasley’s
“Extendable Ears” from the Harry Potter series.

•� Suppose that you wanted to use these magical listeners to
detect events in the canvas shown at the bottom of the slide.
All you need to do is send those ears into the room where,
being magical, they can keep you informed on anything that
goes on there, making it possible for you to respond.

ListenerExample�

First-Class Functions
•� Writing listener functions requires you to make use of one of

JavaScript’s most important features, which is summed up in
the idea that functions in JavaScript are treated as data values
just like any others.

•� Given a function in JavaScript, you can assign it to a variable,
pass it as a parameter, or return it as a result.

•� Functions that have are treated like any data value are called
first-class functions.

•� The textbook includes examples of how first-class functions
can be used to write a program that generates a table of values
for a client-supplied function. The focus in today’s lecture is
using first-class functions as listeners.

Declaring Functions using Assignment
•� The syntax for function definitions you have been using all

along is really just a convenient shorthand for assigning a
function to a variable. Thus, instead of writing

JavaScript allows you to write

function fahrenheitToCelsius(f) {
 return 5 / 9 * (f – 32);
}

var fahrenheitToCelsius = function(f) {
 return 5 / 9 * (f – 32);
};

•� Note that this form is a declaration and requires a semicolon.

Closures
•� The assignment syntax has few advantages over the more

familiar definition for functions defined at the highest level of
a program.

•� The real advantage of declaring functions in this way comes
when you declare one function as a local variable inside
another function. In that case, the inner function not only
includes the code in the function body but also has access to
the local variables in the outer function.

•� This combination of a function definition and the collection
of local variables available in the stack frame in which the
new function is defined is called a closure.

•� Closures are essential to writing interactive programs in
JavaScript, so it is worth going through several examples in
detail.

– 3 –

A Simple Interactive Example
•� The first interactive example in the text is DrawDots:

function DrawDots() {
 var gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 var clickAction = function(e) {
 var dot = GOval(e.getX() - DOT_SIZE / 2,
 e.getY() - DOT_SIZE / 2,
 DOT_SIZE, DOT_SIZE);
 dot.setFilled(true);
 gw.add(dot);
 };
 gw.addEventListener("click", clickAction);
}

•� The key to understanding this program is the clickAction
function, which defines what to do when the mouse is clicked.

•� It is important to note that clickAction has access to the gw
variable in DrawDots because gw is included in the closure.

Registering an Event Listener
•� The last line in the DrawDots function is

gw.addEventListener("click", clickAction);

which tells the graphics window (gw) to call clickAction
whenever a mouse click occurs in the window.

var clickAction = function(e) {
 var dot = GOval(e.getX() - DOT_SIZE / 2,
 e.getY() - DOT_SIZE / 2,
 DOT_SIZE, DOT_SIZE);
 dot.setFilled(true);
 gw.add(dot);
};

•� The definition of clickAction is

Callback Functions
•� The clickAction function in the DrawDots.js program is

representative of all functions that handle mouse events. The
DrawDots.js program passes the function to the graphics
window using the addEventListener method. When the
user clicks the mouse, the graphics window, in essence, calls
the client back with the message that a click occurred. For
this reason, such functions are known as callback functions.

•� The parameter e supplied to the clickAction function is a
data structure called a mouse event, which gives information
about the specifics of the event that triggered the action.

•� The programs in the text use only two methods that are part of
the mouse event object: getX() and getY(). These methods
return the x and y coordinates of the mouse click in the
coordinate system of the graphics window.

Mouse Events
•� The following table shows the different mouse-event types:

•� Certain user actions can generate more than one mouse event.
For example, clicking the mouse generates a "mousedown"
event, a "mouseup" event, and a "click" event, in that order.

•� Events trigger no action unless a client is listening for that
event type. The DrawDots.js program listens only for the
"click" event and is therefore never notified about any of the
other event types that occur.

"click"

"dblclk"

"mousedown"

"mouseup"

"mousemove"

"drag"

The user clicks the mouse in the window.
The user double-clicks the mouse.
The user presses the mouse button.
The user releases the mouse button.
The user moves the mouse with the button up.
The user drags the mouse with the button down.

A Simple Line-Drawing Program

import "graphics";

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 300;

function DrawLines() {
 var gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 var line = null;
 var mousedownAction = function(e) {
 line = GLine(e.getX(), e.getY(), e.getX(), e.getY());
 gw.add(line);
 };
 var dragAction = function(e) {
 line.setEndPoint(e.getX(), e.getY());
 };
 gw.addEventListener("mousedown", mousedownAction);
 gw.addEventListener("drag", dragAction);
}

Drawing a line using this program requires three actions: pressing
the mouse button at the starting point of the line, dragging the
mouse to the desired end point, and then releasing the mouse.

The function mousedownAction responds to the event by creating
a new zero-length line that begins and ends at the current mouse
position.

Dragging the mouse results in a series of dragAction calls that
come in rapid succession each time the computer reads the mouse
position. Each call simply resets the end point of the line.

The effect of this strategy is that the user sees the line as it grows,
providing the necessary visual feedback to position the line
correctly.

As you drag the mouse, the line will stretch, contract, and change
direction as if the two points were connected by an elastic band.
This technique is therefore called rubber-banding.

In all likelihood, you have at some point used an application that
allows you to draw lines with the mouse. In JavaScript, the
necessary code fits easily on a single slide.

Simulating the DrawLines Program

DrawLines�

– The two calls to addEventListener register the listeners.
– Depressing the mouse button generates a "mousedown" event.
– The mousedownAction call adds a zero-length line to the canvas.
– Dragging the mouse generates a series of "drag" events.
– Each dragAction call extends the line to the new position.
– Releasing the mouse stops the dragging operation.
– Repeating these steps adds new lines to the canvas.

mouse
down drag drag drag drag drag drag drag

DrawLines�

