
Jerry Cain and Eric Roberts Handout #15
CS 106J April 19, 2017

Mechanics of Functions

Mechanics of Functions

Jerry Cain and Eric Roberts
CS 106J

April 19, 2017

Mechanics of the Function-Calling Process
When you invoke a function, the following actions occur:

JavaScript evaluates the arguments in the context of the caller. 1.
JavaScript copies each argument value into the corresponding
parameter variable, which is allocated in a newly assigned region of
memory called a stack frame. This assignment follows the order in
which the arguments appear: the first argument is copied into the
first parameter variable, and so on. If there are too many arguments,
the extras are ignored. If there are too few, the extra parameters are
initialized to undefined.

2.

JavaScript then evaluates the statements in the function body, using
the new stack frame to look up the values of local variables.

3.

When JavaScript encounters a return statement, it computes the
return value and substitutes that value in place of the call.

4.

JavaScript then removes the stack frame for the called function and
returns to the caller, continuing from where it left off.

5.

The Combinations Function
•� To illustrate method calls, the text uses a function C(n, k) that

computes the combinations function, which is the number of
ways one can select k elements from a set of n objects.

•� Suppose, for example, that you have a set of five coins: a
penny, a nickel, a dime, a quarter, and a dollar:

 How many ways are there to select two coins?
penny + nickel
penny + dime
penny + quarter
penny + dollar

nickel + dime
nickel + quarter
nickel + dollar

dime + quarter
dime + dollar

quarter + dollar

for a total of 10 ways.

Combinations and Factorials
•� Fortunately, mathematics provides an easier way to compute

the combinations function than by counting all the ways. The
value of the combinations function is given by the formula

C(n, k) =
n !

k ! (n – k) ! x�

•� Given that you already have a fact function, is easy to turn
this formula directly into a function, as follows:

function combinations(n, k) {
 return fact(n) / (fact(k) * fact(n - k));
}

•� The next slide simulates the operation of combinations and
fact in the context of a simple run function.

Tracing the combinations Function

> combinations(6, 2)

n k
6 2 n result i

6 1 1 1 2 2 3 6 4 24 5 120 6 720 7

720

n result i
2 1 1 1 2 2 3

2

n result i
4 1 1 1 2 2 3 6 4 24 5

24

15

15
>

n k

Exercise: Finding Perfect Numbers
•� Greek mathematicians took a special interest in numbers that

are equal to the sum of their proper divisors (a proper divisor
of n is any divisor less than n itself). They called such
numbers perfect numbers. For example, 6 is a perfect
number because it is the sum of 1, 2, and 3, which are the
integers less than 6 that divide evenly into 6. Similarly, 28 is
a perfect number because it is the sum of 1, 2, 4, 7, and 14.

•� For the next several minutes of class, we’re going to design
and implement a JavaScript program that finds all the perfect
numbers between two limits. For example, if the limits are 1
and 10000, the output should look like this:

JavaScript Console�

The perfect numbers between 1 and 10000 are:
6
28
496
8128

– 2 –

PerfectNumbers.js

