
Eric Roberts and Jerry Cain Handout #14
CS 106J April 19, 2017

Section Handout #2—Simple Javascript

1. Bug Squash
In this problem, you will be presented
with code containing common bugs
that we will all probably write at
some point (maybe you won’t after
taking 106J J).
The expected output is provided, but
for one reason or another the code is
not producing the expected output.
Your job is to determine what the
code actually outputs. Then, identify
and fix the bugs in the code.
function isEricRoberts(name) {
 if (name = "Eric Roberts"){
 return true;
 }
 return false;
}
isEricRoberts("Jerry Cain"); è should return false

function climbHooverTower() {

 var currentFloor = 1;

 while (currentFloor <= 12) {

 console.log("On floor " + currentFloor + ". ");

 currentFloor + 1;

 }

}

climbHooverTower(); è should output "On floor 1. / ... / On floor 12."

Note: the / represents a line break, used here just to save space.

function countToTen() {

 var counts = "";

 for (var i = 1; i < 10; i++) {

 counts += i + " ";

 }

 console.log(counts);

}

countToTen(); è should output "1 2 3 4 5 6 7 8 9 10 "

 – 2 –

2. Squares

ASCII Square

const SQUARE_LENGTH = 15;

console.log(asciiSquare());

We take amazingly detailed graphics for granted today, but in the
past merging computer science and art took the form of ASCII
art. Since we are only budding ASCII artists, let’s start by trying
to draw a square.
Using just the character 'x', your job is write a function that
returns a string that has SQUARE_LENGTH rows with
SQUARE_LENGTH x’s in each row.
Hint: The character '\n' is a line break, and it will be useful
here. Also, think about how you can use multiple for-loops.

Graphical Square
Now let’s return to the 21st century. Your job is to write a GraphicsProgram that displays
a square in the middle of the graphics window:

The constants provided in the starter code are shown above. You are encouraged to refer
to the methods available in the Stanford Graphics Library found on page 68 of the reader.
Hint: Remember the origin for the coordinates of graphical objects is in the top-left
corner. Think about how to use that information to help you center an object.

 – 3 –

3. Drawing a face
Your job is to draw a robot-looking face like the one shown in the following sample run:

This simple face consists of four parts—a head, two eyes, and a mouth—which are
arranged as follows:

• The head. The head is a big rectangle whose dimensions are given by the named

constants HEAD_WIDTH and HEAD_HEIGHT. The interior of the head is gray.
• The eyes. The eyes should be circles whose radius in pixels is given by the named

constant EYE_RADIUS. The centers of the eyes should be set horizontally a quarter of
the width of the head in from either edge, and one quarter of the distance down from
the top of the head. The eyes are yellow.

• The mouth. The mouth should be centered with respect to the head in the x-dimension
and one quarter of the distance up from the bottom of the head in the y-dimension.
The dimensions of the mouth are given by the named constants MOUTH_WIDTH and
MOUTH_HEIGHT. The mouth is white.

Finally, the robot face should be centered in the graphics window.

19%3. Food for thought

We learned about the modulo operation (%) in lecture. It turns out that this is a fairly
useful and practical operation in programming. Can you think of a few use cases?

