
Jerry Cain and Eric Roberts Handout #9
CS 106J April 12, 2017

Strings and Graphics

Strings and Graphics

Jerry Cain and Eric Roberts
CS 106J

April 12, 2017

Nonnumeric Data
•� The arithmetic expressions in the early sections of Chapter 2

enable you to perform numeric computation. Much of the
excitement of modern computing, however, lies in the ability
of computers to work with other types of data, such as
characters, images, sounds, and video.

•� As you will learn in Chapter 6, all of these data types are
represented inside the machine as sequences of binary digits,
or bits. When you are getting started with programming, it is
more important to think about data in a more abstract way in
which you focus on the conceptual values rather than the
underlying representation.

Data Types
•� The notion that data values come in many different forms

gives rise to the notion of a data type, which defines the
common characteristics of data values that have a particular
form or purpose.

•� In computer science, each data type is defined by a domain,
which is the set of values that belong to that type, and a set of
operations, which shows how the values in that domain can
be manipulated.

•� For example, the JavaScript type for numbers has a domain
that consists of numeric values like 1.414213 or 42. The set
of operations includes addition, subtraction, multiplication,
division, remainder, and a few more that you haven’t learned
yet.

The String Type
•� One of the most important data types in any programming

language is the string type.

•� The domain of the string type is all sequences of characters.
In JavaScript, you create a string simply by including that
sequence of characters inside quotation marks, as in "Jerry".

•� The set of operations that can be applied to strings is large,
but you don’t need to know the entire set. In fact, for the first
five chapters in the text, the only string operation you need to
know is concatenation, as described on the next slide. You
will learn about other operations in Chapter 6.

•� All values—including numbers, strings, graphical objects,
and values of many other types—can be assigned to variables,
passed as arguments to functions, and returned as results.

Concatenation
•� One of the most useful operations available for strings is

concatenation, which consists of combining two strings end
to end with no intervening characters.

•� Concatenation is built into JavaScript using the + operator.
For example, the expression "ABC" + "DEF" returns the string
"ABCDEF".

•� If you use + with numeric operands, it signifies addition. If at
least one of its operands is a string, JavaScript interprets + as
concatenation. It automatically converts the other operand to
a string and concatenates the two strings, so that

"Catch" + -22 "Catch-22"

The Graphics Model
•� SJS uses the same graphics model that we have used for the

last decade, which is based on the metaphor of a collage.
•� A collage is similar to a child’s felt board that serves as a

backdrop for colored shapes that stick to the felt surface. As
an example, the following diagram illustrates the process of
adding a blue rectangle and a red oval to a felt board:

•� Note that newer objects can obscure those added earlier. This
layering arrangement is called the stacking order.

– 2 –

The BlueRectangle Program

BlueRectangle�

import "graphics";

function BlueRectangle() {
 var gw = GWindow(500, 200);
 var rect = GRect(150, 50, 200, 100);
 rect.setColor("Blue");
 rect.setFilled(true);
 gw.add(rect);
} rect�

The JavaScript Coordinate System

•� Positions and distances on the screen are measured in terms of
pixels, which are the small dots that cover the screen.

•� Unlike traditional mathematics, Java defines the origin of the
coordinate system to be in the upper left corner. Values for
the y coordinate increase as you move downward.

pixels
(0, 0)

(150, 50)

200 pixels

10
0

pi
xe

ls

BlueRectangle�

Systems of Classification

Carl Linnaeus (1707–1778)�

•� In the mid-18th century, the
Scandinavian botanist Carl
Linnaeus revolutionized the study
of biology by developing a new
system for classifying plants and
animals in a way that revealed
their structural relationships and
paved the way for Darwin’s theory
of evolution a century later.

•� Linnaeus’s contribution was to
recognize that organisms fit into a
hierarchy in which the placement
of individual species reflects their
anatomical similarities.

Biological Class Hierarchy

Crustacea Arachnida Insecta

Annelida Brachiopoda Mollusca Chordata Arthropoda

Plants Fungi Animals

Living Things Living Things

Animals

Arthropoda

Insecta

Hymenoptera

Formicidae

Iridomyrmex

purpureus

Kingdom

Phylum

Order

Class

Family

Genus

Species

Classification of the red ant
Iridomyrmex purpureus

Every red ant is also an animal,
an arthropod, and an insect, as
well as the other superclasses in
the chain.

Instances vs. Patterns
Drawn after you, you pattern of all those.

—William Shakespeare, Sonnet 98

•� In thinking about any classification scheme—biological or
otherwise—it is important to draw a distinction between a
class and specific instances of that class. In the most recent
example, the designation Iridomyrmex purpureus is not itself
an ant, but rather a class of ant. There can be (and usually
are) many ants, each of which is an individual of that class.

•� Each of these fire ants is an instance of a particular class of
ants. Each instance is of the species purpureus, the genus
Iridomyrmex, the family Formicidae (which makes it an ant),
and so on. Thus, each ant is not only an ant, but also an
insect, an arthropod, and an animal.

The GObject Hierarchy

GObject

GRect GOval GLine

•� The classes that represent graphical objects form a hierarchy,
part of which looks like this:

•� The GObject class represents the collection of all graphical
objects.

•� The three subclasses shown in this diagram correspond to
particular types of objects: rectangles, ovals, and lines. Any
GRect, GOval, or GLine is also a GObject.

– 3 –

Creating a GWindow Object
•� The first step in writing a graphical program is to create a

window using the following function declaration, where width
and height indicate the size of the window:

var gw = GWindow(width, height);

gw.add(object)
Adds an object to the window.

gw.remove(object)
Removes the object from the window.

gw.add(object, x, y)
Adds an object to the window after first moving it to (x, y).

gw.getWidth()
Returns the width of the graphics window in pixels.

gw.getHeight()
Returns the height of the graphics window in pixels.

•� The following functions apply to a GWindow object:

Operations on the GObject Class

object.getX()
Returns the x coordinate of this object.

•� The following operations apply to all GObjects:

•� All coordinates and distances are measured in pixels.

•� Each color is a string, such as "Red" or "White". The names
of the standard colors are defined in Figure 2-7 on page 61.

object.getY()
Returns the y coordinate of this object.

object.getWidth()
Returns the width of this object.

object.getHeight()
Returns the height of this object.

object.setColor(color)
Sets the color of the object to the specified color.

Drawing Geometrical Objects
Functions to create geometrical objects:
GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size.

GOval(x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions.

Methods shared by the GRect and GOval classes:
object.setFilled(fill)

If fill is true, fills in the interior of the object; if false, shows only the outline.

object.setFillColor(color)
Sets the color used to fill the interior, which can be different from the border.

GLine(x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1).

The GRectPlusGOval Program

GRectPlusGOval�

function GRectPlusGOval() {
 var gw = GWindow(500, 200);
 var rect = GRect(150, 50, 200, 100);
 rect.setFilled(true);
 rect.setColor("Blue");
 gw.add(rect);
 var oval = GOval(150, 50, 200, 100);
 oval.setFilled(true);
 oval.setColor("Red");
 gw.add(oval);
}

oval�rect�

The DrawDiagonals Program
import "graphics";

/* Constants */

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 200;

function DrawDiagonals() {
 var gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 gw.add(GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT));
 gw.add(GLine(0, GWINDOW_HEIGHT, GWINDOW_WIDTH, 0));
}

DrawDiagonals�

The End

