
Eric Roberts and Jerry Cain Handout #8
CS 106J April 10, 2017

Simple JavaScript

Simple JavaScript

Eric Roberts
CS 106J

April 10, 2017

JavaScript and SJS
•� JavaScript was developed at the Netscape Communications

Corporation in 1995, reportedly by a single programmer in
just 10 days. The language, which was called Mocha at the
time, was designed to serve as a programming language that
could be embedded in web pages viewed in the browser.

•� JavaScript has since become the dominant language for all
interactive web content and appears in some surveys as the
most popular language in the computing industry.

•� CS 106J uses a subset of JavaScript that we are calling SJS
for Stanford JavaScript. The SJS subset includes those parts
of JavaScript that are important for learning the fundamentals
of programming, which is the primary goal of all the CS 106
classes.

Arithmetic Expressions
•� Like most languages, JavaScript specifies computation in the

form of an arithmetic expression, which consists of terms
joined together by operators.

•� Each term in an arithmetic expression is one of the following:
–� An explicit numeric value, such as 2 or 3.14159265
–� A variable name that serves as a placeholder for a value
–� A function call that computes a value
–� An expression enclosed in parentheses

•� The operators are typically the familiar ones from arithmetic:
+ Addition
– Subtraction
* Multiplication
/ Division
% Remainder

The Remainder Operator

•� The result of the % operator make intuitive sense only if both
operands are positive. The examples in the book do not
depend on knowing how % works with negative numbers.

•� The remainder operator turns out to be useful in a surprising
number of programming applications and is well worth a bit
of study.

•� The only arithmetic operator that has no direct counterpart in
traditional mathematics is %, which computes the remainder
when the first divided by the second:

14 % 5 returns 4
14 % 7 returns 0
7 % 14 returns 7

Using the SJS Console
•� The easiest way to get a sense of how arithmetic expressions

work is to enter them on the SJS console.

JavaScript Console�

-> 2 + 2
4
-> 342 - 173
169
-> 12345679 * 63
777777777
-> 9 * 9 * 9 + 10 * 10 * 10
1729
->

Variables
•� The simplest terms that appear in expressions are constant

literals and variables. A variable is a placeholder for a value
that can be updated as the program runs.

•� A variable in JavaScript is most easily envisioned as a box
capable of storing a value

•� Each variable has the following attributes:
–� A name, which enables you to tell the variables apart.
–� A value, which represents the current contents of the variable.

•� The name of a variable is fixed; the value changes whenever
you assign a new value to the variable.

answer
42

– 2 –

Variable Declarations
•� In JavaScript, you must declare a variable before you can use

it. The declaration establishes the name of the variable and,
in most cases, specifies the initial value as well.

var name = value;

•� The most common form of a variable declaration is

where name is an identifier that indicates the name of the
variable, and value is an expression specifying the initial
value.

•� Most declarations appear as statements in the body of a
function definition. Variables declared in this way are called
local variables and are accessible only inside that function.

Constant Declarations
•� It is often useful to give names to values that you don’t intend

to change while the program runs. Such values are called
constants.

const name = value;

•� A constant declaration is similar to a variable declaration:

As before, name is an identifier that indicates the name of the
constant, and value is an expression specifying its value.

Naming Conventions
•� In JavaScript, all names must conform to the syntactic rules

for identifiers, which means that the first character must be a
letter and the remaining characters must be letters, digits, or
the underscore character.

•� Beyond these rules that apply to all JavaScript names, there
are several conventions that programmers use to make their
identifier names easier to recognize:

–� Variable names and function names begin with a lowercase
letter. If a name consists of more than one word, the first letter
in each word is capitalized, as in numberOfStudents. This
convention is called camel case.

–� Class names and program names begin with an uppercase letter.

–� Constant names are written entirely in uppercase and use the
underscore character to separate words, as in MAX_HEADROOM.

Precedence
•� If an expression contains more than one operator, JavaScript

uses precedence rules to determine the evaluation order. The
arithmetic operators have the following relative precedence:

 unary -

* / %

+ -

highest

lowest

Thus, JavaScript evaluates unary – operators first, then the
operators *, /, and %, and then the operators + and -.

•� Precedence applies only when two operands compete for the
same operator. If the operators are independent, JavaScript
evaluates expressions from left to right. Parentheses may be
used to change the order of operations.

Exercise: Precedence Evaluation
What is the value of the expression at the bottom of the screen?

1 * 2 * 3 + 4 + 5 () % 6 * 7 + 8 () - 9

Assignment Statements

variable = expression;

•� You can change the value of a variable in your program by
using an assignment statement, which has the general form:

•� The effect of an assignment statement is to compute the value
of the expression on the right side of the equal sign and assign
that value to the variable that appears on the left. Thus, the
assignment statement

total = total + value;

 adds together the current values of the variables total and
value and then stores that sum back in the variable total.

•� When you assign a new value to a variable, the old value of
that variable is lost.

– 3 –

Shorthand Assignments
•� Statements such as

total = total + value;

 are so common that JavaScript allows the following shorthand:
total += value;

variable op= expression;

•� The general form of a shorthand assignment is

 where op is any of JavaScript’s binary operators. The effect of
this statement is the same as

variable = variable op (expression);

Increment and Decrement Operators
•� Another important shorthand that appears frequently in

JavaScript programs is the increment operator, which is most
commonly written immediately after a variable, like this:

x++;

 The effect of this statement is to add one to the value of x,
which means that this statement is equivalent to

x += 1;

 or
x = x + 1;

•� The -- operator (which is called the decrement operator) is
similar but subtracts one instead of adding one.

Functions Revisited
•� Last week, you learned that a function in Karel is a sequence

of statements that has been collected together and given a
name.

•� Although that definition also applies in JavaScript, it fails to
capture the idea that functions can process information.

•� In JavaScript, a function can take information from its caller,
perform some computation, and then return a result.

•� This notion that functions exist to manipulate information and
return results makes functions in programming similar to
functions in mathematics, which is historically the reason for
the name.

Functions in Mathematics

•� Plugging in a value for x allows you to
compute the value of f (x), as follows:

•� The graph at the right shows the values
of the function

f (x) = x
2 � 5

f (0) = 02 � 5 = �5
f (1) = 12 � 5 = �4
f (2) = 22 � 5 = �1
f (3) = 32 � 5 = 4

•� The JavaScript version of f (x) is

function f(x) {
 return x * x – 5;
}

Writing JavaScript Functions
•� The general form of a function definition is

function name(parameter list) {
 statements in the function body
}

where name is the name of the function, and parameter list is
a list of variables used to hold the values of each argument.

•� You can return a value from a function by including a return
statement, which is usually written as

return expression;

 where expression is an expression that specifies the value you
want to return.

Examples of Simple Functions
•� The following function converts Fahrenheit temperatures to

their Celsius equivalent:

function fahrenheitToCelsius(f) {
 return 5 / 9 * (f – 32);
}

•� The following function computes the area of a triangle from
its base and height:

function triangleArea(base, height) {
 return (base * height) / 2;
}

– 4 –

Exercise: Money in the Wizarding World

29 knuts = 1 sickle
17 sickles = 1 galleon

In J. K. Rowling’s Harry Potter books, wizards use a currency
with the following equivalences:

Write a function

function numberOfGalleons(knuts, sickles)

that returns the number of galleons (which will usually have a
decimal fraction) corresponding to the specified number of
knuts and sickles. For example, calling

numberOfGalleons(29 * 17, 17)

should return 2.

Useful Functions in the Math Class

Math.abs(x)
Math.max(x, y, . . .)
Math.min(x, y, . . .)
Math.round(x)
Math.floor(x)
Math.log(x)

Math.pow(x, y)
Math.sin(�)
Math.cos(�)
Math.random(x)

Math.PI
Math.E

Math.exp(x)

The mathematical constant �
The mathematical constant e
The absolute value of x
The largest of the arguments
The smallest of the arguments
The closest integer to x
The largest integer not exceeding x
The natural logarithm of x
The inverse logarithm (e x)
The value x raised to the y power (x y)
The sine of �, measured in radians
The cosine of �, measured in radians
A random number between 0 and 1

Exercise: Calculating a Quotient
It is often useful to be able to compute the quotient of two
numbers, which is the whole number that results if you divide
the first by the second and then throw away any remainder. The
usual way to calculate a quotient is to use Math.floor like this:

function quotient(x, y) {
 return Math.floor(x / y);
}

Rewrite the quotient function so that it uses only the standard
arithmetic operators. Your function may assume that both x and
y are positive.

