
Eric Roberts Handout #3
CS 106A April 5, 2017

Programming in Karel

Chapter 1 of the draft textbook includes several examples that illustrate the use of control
statements in Karel’s world. Whenever possible, I like to solve different problems in
lecture so that you can see a different set of examples than the ones in the text. By
offering two sets of examples, you are in a better position to understand the general
principles as opposed to the details of a particular problem.

In lecture, the goal is to get you to think about the problems and solve them as we go. If I
put the solution on the handout, it’s far too tempting just to look at the answer instead of
trying to work things out on your own. Thus, I use handouts to describe the problems
and then put the solutions up on the web so that you can look them over after class.

The problem we will solve today is that of getting Karel to climb mountains. Like
everything else in Karel’s world, the mountain is abstract and must be constructed from
the available materials, specifically beepers and walls. The goal is to get Karel to move
up to a mountain marked out by walls, climb the mountain by moving up each stair-step,
put down a beeper to serve as a flag, climb back down the other side, and finally move
ahead to the end of the world. This problem is illustrated in the following diagram:

 before after

→

At first, the goal is simply to solve the specific problem posed by this mountain. From
there, however, the more interesting task is to generalize the problem so that Karel can
climb larger mountains with the same stair-step structure, like this:

– 2 –

Programming in Karel

Eric Roberts and Jerry Cain

CS 106J
April 5, 2017

Once upon a time . . .

Rich Pattis and Karel the Robot
•� Karel the Robot was developed by

Rich Pattis in the 1970s when he was

a graduate student at Stanford.

•� In 1981, Pattis published Karel the
Robot: A Gentle Introduction to the
Art of Programming, which became a

best-selling introductory text.

•� Pattis chose the name Karel in honor

of the Czech playwright Karel Capek,

who introduced the word robot in his

1921 play R.U.R.

•� In 2006, Pattis received the annual

award for Outstanding Contributions

to Computer Science Education given

by the ACM professional society.

ˇ

Review: Primitive Karel Commands

move() Move forward one square

turnLeft() Turn 90 degrees to the left

pickBeeper() Pick up a beeper from the current square

putBeeper() Put down a beeper on the current square

•� On Monday, you learned that Karel understands the following

commands:

•� At the end of class, we designed a Karel program to solve the
following problem:

+ + + + +

+ + + + +

+ + + + +

1

2

3

1 2 3 4 5

+ + + + +

+ + + + +

+ + + + +

1

2

3

1 2 3 4 5

The MoveBeeperToLedge Program

/*
 * File: MoveBeeperToLedge.k
 * -------------------------
 * This program moves a beeper to a ledge.
 */

function moveBeeperToLedge() {
 move();
 pickBeeper();
 move();
 turnLeft();
 move();
 turnLeft();
 turnLeft();
 turnLeft();
 move();
 putBeeper();
 move();
}

Syntactic Rules and Patterns

•� The definition of MoveBeeperToLedge on the preceding slide

includes various symbols (such as curly braces, parentheses,

and semicolons) and special keywords (such as function)

whose meaning may not be immediately clear. These symbols

and keywords are required by the syntactic rules of the Karel

programming language, in much the same way that syntactic

rules govern human languages.

•� When you are learning a programming language, it is often

wise to ignore the details of the language syntax and focus

instead on learning a few general patterns. Karel programs,

for example, fit a common pattern in that they define one or

more functions that describe the steps Karel must perform in

order to solve a particular problem.

– 3 –

Defining New Functions
•� In Karel—and in JavaScript as you will see beginning next

week—a function is a sequence of statements that has been
collected together and given a name. All functions in Karel
have the following form:

function name() {
 statements that implement the desired operation
}

•� The first function in a Karel program is the main function,
which is called when you press the Run button at the bottom
of the screen.

•� Most Karel programs define additional helper functions that
implement individual steps in the complete solution.

The turnRight Function
•� As a simple example, the following function definition allows

Karel to turn right by executing three turnLeft operations:

function turnRight() {
 turnLeft();
 turnLeft();
 turnLeft();
}

•� Once you have made this definition, you can use turnRight
in your programs in exactly the same way you use turnLeft.

•� In a sense, defining a new function is analogous to teaching
Karel a new word. The name of the function becomes part of
Karel’s vocabulary and extends the set of operations the robot
can perform.

Helper Functions in a Program
function moveBeeperToLedge() {
 move();
 pickBeeper();
 move();
 turnLeft();
 move();
 turnRight();
 move();
 putBeeper();
 move();
}

/* Turns Karel right 90 degrees */

function turnRight() {
 turnLeft();
 turnLeft();
 turnLeft();
}

Exercise: Defining functions

•� Define a function turnAround that turns Karel around 180°.

•� Define a function backup that moves Karel backward one
square, leaving Karel facing in the same direction.

•� The turnRight and turnAround functions are so important
that they are included in a library called "turns".

Control Statements
•� In addition to allowing you to define new functions, Karel

also includes statement forms that allow you to change the
order in which statements are executed. Such statements are
called control statements.

•� The control statements available in Karel are:

–� The repeat statement, which repeats a set of statements a
predetermined number of times.

–� The while statement, which repeats a set of statements as long
as some condition holds.

–� The if statement, which applies a conditional test to determine
whether a set of statements should be executed at all.

–� The if-else statement, which uses a conditional test to choose
between two possible actions.

The repeat Statement

•� In Karel, the repeat statement has the following form:

•� As with the other control statements, the repeat statement
consists of two parts:

–� The header line, which specifies the number of repetitions

–� The body, which is the set of statements to be repeated

•� The keyword repeat and the various punctuation marks
appear in boldface, which means that they are part of the
repeat statement pattern. The things you can change appear
in italics: the number of repetitions and the statements in the
body.

repeat (count) {
 statements to be repeated
}

– 4 –

Using the repeat Statement
•� You can use repeat to redefine turnRight as follows:

function turnRight() {
 repeat (3) {
 turnLeft();
 }
}

•� The following function creates a square of four beepers,
leaving Karel in its original position:

function makeBeeperSquare() {
 repeat (4) {
 putBeeper();
 move();
 turnLeft();
 }
}

Conditions in Karel
•� Karel can test the following conditions:

frontIsClear() frontIsBlocked()

leftIsClear() leftIsBlocked()

rightIsClear() rightIsBlocked()

beepersPresent() noBeepersPresent()

beepersInBag() noBeepersInBag()

facingNorth() notFacingNorth()

facingEast() notFacingEast()

facingSouth() notFacingSouth()

facingWest() notFacingWest()

positive condition negative condition

The while Statement
•� The general form of the while statement looks like this:

•� The simplest example of the while statement is the function
moveToWall, which comes in handy in lots of programs:

function moveToWall() {
 while (frontIsClear()) {
 move();
 }
}

while (condition) {
 statements to be repeated
}

The if and if-else Statements
•� The if statement in Karel comes in two forms:

–� A simple if statement for situations in which you may or may
not want to perform an action:

if (condition) {
 statements to be executed if the condition is true
}

if (condition) {
 statements to be executed if the condition is true
} else {
 statements to be executed if the condition is false
}

–� An if-else statement for situations in which you must choose
between two different actions:

function test() {
 putBeeperLine();
 turnLeft();
 putBeeperLine();
}

Exercise: Creating a Beeper Line
•� Write a function putBeeperLine that adds one beeper to

every intersection up to the next wall.
•� Your function should operate correctly no matter how far

Karel is from the wall or what direction Karel is facing.
•� Consider, for example, the following function called test:

1 2 3 4 5

1

2

3

2

Climbing Mountains
•� For the rest of today, we’ll explore the use of functions and

control statements in the context of teaching Karel to climb
stair-step mountains that look something like this:

•� The initial version will work only in this world, but later
examples will be able to climb mountains of any height.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

