
Jerry Cain and Eric Roberts Handout #41
CS 106J May 22, 2017

Objects as Maps

Objects as Maps

Jerry Cain and Eric Roberts
CS 106J

May 22, 2017

The Concept of a Map
•� One of the most important applications of JavaScript objects

uses them to associate pairs of data values. In computer
science, the resulting data structure is called a map.

•� Maps associate a simple data value called a key (most often a
string) with a value, which is usually larger and more complex.

•� Examples of maps exist everywhere in the real world. A
classic example is a dictionary. The keys are the words, and
the values are the corresponding definitions.

•� A more contemporary example is the World-Wide Web. In
this example, the keys are the URLs, and the values are the
contents of the corresponding pages.

Exercise: Maps in the Real World
•� Talk with your tablemates and come up with examples from

the real world that fit the map paradigm.

Maps and JavaScript Objects
•� In the context of CS 106J, the most obvious example of a map

is the JavaScript object, which implements precisely the map
concept. The keys are strings, and the values are arbitrary
JavaScript values.

map[key]

If the key is defined in the map, this selection returns the
value. If no definition has been supplied, the selection returns
the constant undefined.

•� When you use an object as a map, you supply the key as a
string expression using the square-bracket notation, as in

map[key] = value;

•� Map selections are assignable, so that you can set the value
associated with a key by executing an assignment statement:

Using Maps in an Application
•� Before going on to create new applications of maps, it seems

worth going through the example from the text, which uses a
map to associate three-letter airport codes with their locations.

•� The association list is stored in a text file that looks like this:

ATL=Atlanta, GA, USA
ORD=Chicago, IL, USA
LHR=London, England, United Kingdom
HND=Tokyo, Japan
LAX=Los Angeles, CA, USA
CDG=Paris, France
DFW=Dallas/Ft Worth, TX, USA
FRA=Frankfurt, Germany . . .

•� The AirportsCodes.js program shows how to read this file
into a JavaScript object.

Symbol Tables
•� Programming languages make internal use of maps in several

contexts, of which one of the easiest to recognize is a symbol
table, which keeps track of the correspondence between
variable names and their values.

•� The SymbolTable.js application included in the example
programs for this lecture implements a simple test of a
symbol table that reads lines from the console, each of which
is one of the following commands:
–� A simple assignment statement of the form var = number.
–� A variable alone on a line, which displays the variable’s value.
–� The command list, which lists all the variables.
–� The command quit, which exits from the program.

•� The sample run on the next slide illustrates the operation of
the SymbolTable.js program.

– 2 –

Sample Run of SymbolTable.js
JavaScript Console�

> pi = 3.14159
> e = 2.71828
> x = 2
> pi
3.14159
> x
2
> list
e = 2.71828
pi = 3.14159
x = 2
> x = 42
> a = 1.5
> list
a = 1.5
e = 2.71828
pi = 3.14159
x = 42
> quit

Reading from the Console
•� Implementing the SymbolTable application requires two new

features that you have not yet seen:

•� Reading a line from the console is more difficult in JavaScript
than it is in most languages, simply because JavaScript
depends on an interaction model based on events and callback
functions.

•� The best strategy for reading a line of user input uses the
console.requestInput method in the following form:

Reading a line from the console. 1.
Iterating through all the keys in the map to implement list. 2.

console.requestInput(prompt, callback);

•� If you need to read lines in a loop, the easiest way is to
include another requestInput call in the callback function.

Iterating Through Keys in an Object
•� One of the common operations that clients need to perform

when using a map is to iterate through the keys.

•� JavaScript supports this operation using an extended form of
the for statement, which has the following form:

for (var key in map) {
 var value = map[key];
 . . . code to work with the individual key and value . . .
}

•� In JavaScript, this extended form of the for loop can process
the keys in any order.

function FindStateCodes() {
 var map = readMap("StateCodes.txt");
 if (map === null) {
 console.log("The StateCodes.txt file is missing.");
 } else {
 var callback = function(code) {
 if (code !== "") {
 var state = map[code];
 if (state === undefined) {
 console.log(code + " is not a legal state code.");
 } else {
 console.log(state);
 }
 console.requestInput("Enter code: ", callback);
 }
 };
 console.requestInput("Enter code: ", callback);
 }
}

The FindStateCodes.js Program

/*
 * Reads the specified file and returns a map between keys and
 * values. Entries appear as key=value lines in the data file.
 */

function readMap(filename) {
 var lines = File.readLines(filename);
 if (lines === undefined) return null;
 var map = { };
 var line = lines.shift();
 while (line !== undefined) {
 var equals = line.indexOf("=");
 if (equals === -1) {
 console.log("Missing = in " + line);
 return null;
 }
 var key = line.substring(0, equals).trim();
 var value = line.substring(equals + 1).trim();
 map[key] = value;
 line = lines.shift();
 }
 return map;
}

The readMap Function Maps Can Be Fast
•� If you think about the underlying implementation of maps,

your first thought is likely to be that JavaScript looks through
a list of keys to find the key in question and returns the
corresponding value. That approach takes time proportional
to the number of keys.

•� Maps, however, can be implemented much more efficiently
than that. As you will learn if you go on to CS 106B, you will
learn that maps can be implemented so that the result is
delivered almost instantly or, more accurately, so that the time
required is constant no matter how many keys there are.

•� To show that this result might in fact be possible, consider the
state code example. If the state names are stored in an 26x26
array in which the indices correspond to the first and second
letters in the code, finding the name is simply an array access.

Fast

