
Eric Roberts and Jerry Cain Handout #18
CS 106J April 24, 2017

Assignment #3—Breakout!

Due: Friday, May 5, 5:00P.M.
Note: This assignment may be done in pairs

Your job in this assignment is to write the classic arcade game of
Breakout, which was invented by Steve Wozniak before he founded
Apple with Steve Jobs. It is a large assignment, but well within your
capabilities, as long as you break the problem up into manageable
pieces. The decomposition is discussed in this handout, and there
are several suggestions for staying on top of things in the “Strategy
and tactics” section later in this handout.

The Breakout game
In Breakout, the initial configuration of the world appears as shown
on the right. The colored rectangles in the top part of the screen are
bricks, and the slightly larger rectangle at the bottom is the paddle.
The paddle is in a fixed position in the vertical dimension, but moves
back and forth across the screen along with the mouse until it
reaches the edges of the window.

A complete game consists of three turns. On each turn, a ball is
launched from the center of the window toward the bottom of the
screen at a random angle. That ball bounces off the paddle and the
walls of the world, in accordance with the physical principle
generally expressed as “the angle of incidence equals the angle of
reflection” (which turns out to be very easy to implement as
discussed later in this handout). Thus, after two bounces—one off
the paddle and one off the right wall—the ball might have the
trajectory shown in the second diagram. (Note that the dotted line is
there only to show the ball’s path and does not actually appear on the
screen.)

As you can see from the second diagram, the ball is about to
collide with one of the bricks on the bottom row. When that
happens, the ball bounces just as it does on any other collision, but
the brick disappears. The third diagram shows what the game looks
like after that collision and after the player has moved the paddle to
put it in line with the oncoming ball.

 – 2 –

The play on a turn continues in this way until one of two conditions occurs:

1. The ball hits the lower wall, which means that the player must have missed it with the

paddle. In this case, the turn ends and the next ball is served if the player has any
turns left. If not, the game ends in a loss for the player.

2. The last brick is eliminated. In this case, the player wins, and the game ends
immediately.

After all the bricks in a particular column have been cleared, a path

will open to the top wall. When this delightful situation occurs, the
ball will often bounce back and forth several times between the top
wall and the upper line of bricks without the user ever having to
worry about hitting the ball with the paddle. This condition is a
reward for “breaking out” and gives meaning to the name of the
game. The diagram on the right shows the situation shortly after the
first ball has broken through the wall. That ball will go on to clear
several more bricks before it comes back down the open channel.

It is important to note that, even though breaking out is a very
exciting part of the player’s experience, you don’t have to do
anything special in your program to make it happen. The game is
simply operating by the same rules it always applies: bouncing off
walls, clearing bricks, and otherwise obeying the laws of physics.

The starter file
The starter project for this assignment has a little more in it than it has in the past, but
none of the important parts of the program. The contents of the initial Breakout.js file
appear in Figure 1. This file takes care of the following details:

• It includes the imports you will need in writing the game.
• It defines the constants that control the game parameters, such as the dimensions of the

various objects. Your code should use these constants internally so that changing them
in your file changes the behavior of your program accordingly. Note that some of
these constants are specified directly but that others are derived from constants
specified earlier.

• It includes a skeleton for the Breakout function. Your job is to add the code for the
Breakout game along with the definition of helper and callback functions, all of which
are easiest to define as local functions inside Breakout so that they can share its
variables.

Success in this assignment will depend on breaking up the problem into manageable

pieces and getting each one working before you move on to the next. The next few
sections describe a reasonable staged approach to the problem.

 – 3 –

Figure 1. The starter file for the Breakout game

Stage 1—Set up the bricks
Before you start playing the game, you have to set up the various pieces. Thus, it makes
sense to call a function to set up the game before you create the timer that starts the
animation. An important part of the setup consists of creating the rows of bricks at the
top of the game, which look like this:

 – 4 –

The number, dimensions, and spacing of the bricks are specified using constants in the
starter file, as is the distance from the top of the window to the first line of bricks. The
only value you need to compute is the x coordinate of the first column, which should be
chosen so that the bricks are centered in the window, with the leftover space divided
equally on the left and right sides. The colors of the bricks remain constant for two rows
and run in the following rainbow-like sequence: "Red", "Orange", "Green", "Cyan" and
"Blue". If you change the definition of N_ROWS in the starter file, any additional rows
should simply repeat this sequence, starting over from "Red".

This part of the assignment is similar to the pyramid problem from
Assignment #2. The parts that are only a touch more difficult are that
you need to fill and color the bricks. This extra complexity is more
than compensated by the fact that the number of bricks is the same in
each row, and you don’t have to change the coordinate calculation as
you move upward on the screen.

Here’s a suggestion: Why don’t you get this part of the program
working by Wednesday the 26th, so that you can produce the diagram
at the right? The display has most of what you see on the final screen
and will give you considerable confidence that you can get the rest
done. And you’ll be well on your way before time gets short.

Stage 2—Create the paddle
The next step is to create the paddle. At one level, this is considerably easier than
creating the bricks. There is only one paddle, which is a filled GRect. You even know its
position relative to the bottom of the window.

The challenge in creating the paddle is to make it track the mouse. The technique is
similar to that discussed in Chapter 5 for dragging an object around in the window. Here,
however, you only have to pay attention to the x coordinate of the mouse because the y
position of the paddle is fixed. The only additional wrinkle is that you should not let the
paddle move off the edge of the window. Thus, you’ll have to check to see whether the x
coordinate of the mouse would make the paddle extend beyond the boundary and change
that x coordinate if necessary to ensure that the entire paddle is visible in the window.

Here’s another milestone suggestion: Why don’t you get this part of the program
working by Friday the 28th, so that you can follow the mouse with the paddle? This
entire part of the program takes fewer than 10 code lines, so it shouldn’t take so long.
The hard part lies in reading Chapter 5 (“Writing Interactive Programs”) and
understanding what you need to do.

Stage 3—Create a ball and get it to bounce off the walls
At one level, creating the ball is easy, given that it’s just a filled GOval. The interesting
part lies in getting it to move and bounce appropriately. You are now past the “setup”
stage and into the “play” phase of the game. To start, create a ball and put it in the center
of the window. As you do so, keep in mind that the coordinates of the GOval do not
specify the location of the center of the ball but rather its upper left corner. The math is
not any more difficult, but may be a bit less intuitive.

 – 5 –

The program needs to keep track of the velocity of the ball, which consists of two
separate components—vx and vy are the names used in this handout—which you will
presumably declare as local variables inside Breakout.

The values of the vx and vy variables represent the change in position that occurs on
each time step. Initially, the ball should be heading downward, and you might try a
starting value of 3.0 for vy, which is included in the constants as INITIAL_Y_VELOCITY.
The game would be boring if every ball took the same course, so you should choose the
vx component randomly. If you use the RandomLib.js library introduced in last
Monday’s lecture, the best way to set the x component of the velocity is:

vx = randomReal(MIN_X_VELOCITY, MAX_X_VELOCITY);
if (randomChance()) vx = -vx;

This code sets vx to be a random real number in the range 1.0 to 3.0 (given the provided
definitions of the constants) and then makes it negative half the time. This strategy works
much better than calling randomReal(-MAX_X_VELOCITY, MAX_X_VELOCITY), which
might generate a ball going more or less straight down. That would make life far too
easy for the player.

You then need to get the ball moving by creating a timer that fires every TIME_STEP
milliseconds and updates the position of the ball each time by moving it vx pixels in the x
direction and vy pixels in the y direction. The model to use for this part of the program is
the AnimatedSquare.js program in Chapter 5. But it wouldn’t be entirely sporting to
have the ball start moving the moment the game started. To give the user a chance to get
ready, what you want to have happen is that the ball starts moving when the user clicks
the mouse. You therefore need to add a listener for the "click" event that starts the
timer.

Once you’ve gotten the ball moving, your next challenge is to get it to bounce around
the world, ignoring, at least for the moment, the paddle and the bricks entirely. To do so,
you need to check to see if the coordinates of the ball have moved outside the window.
Thus, to see if the ball has bounced off the right wall, you need to see whether the
coordinate of the right edge of the ball has become greater than the width of the window;
the other three directions are treated similarly. For now, have the ball bounce off the
bottom wall so that you can watch it make its path around the world. You can change
that test later so that hitting the bottom wall signifies the end of a turn.

Computing what happens after a bounce is extremely simple. If a ball bounces off the
top or bottom wall, all you need to do is reverse the sign of vy. Symmetrically, bounces
off the side walls simply reverse the sign of vx.

Stage 4—Checking for collisions
Now comes the interesting part. In order to make Breakout into a real game, you have to
be able to tell whether the ball is colliding with another object in the window. As
scientists often do, it helps to begin by making a simplifying assumption and then
relaxing that assumption later. Suppose the ball were a single point rather than a circle.
In that case, how could you tell whether it had collided with another object?

 – 6 –

If you look in Chapter 5 at the methods that are defined for the GWindow class, you will
discover that there is a method getElementAt(x, y) that takes a location in the window
and returns the graphical object at that location, if any. If there are no graphical objects
that cover that position, getElementAt returns the special constant null. If there is more
than one, getElementAt always chooses the one closest to the top of the stacking order,
which is the one that appears to be in front on the display.

So far, so good. But, unfortunately, the ball is not a single point. It occupies physical
area and therefore may collide with something on the screen even though its center does
not. The easiest thing to do—which is in fact typical of the simplifying assumptions
made in real computer games—is to check a few carefully chosen points on the outside of
the ball and see whether any of those points has collided with anything. As soon as you
find something at one of those points, you can declare that the ball has collided with that
object.

In your implementation, the easiest thing to do is to check the four corner points on the
square in which the ball is inscribed. Remember that a GOval is defined in terms of its
bounding rectangle, so that if the upper left corner of the ball is at the point (x, y), the
other corners will be at the locations shown in this diagram:

These points have the advantage of being outside the ball—which means that
getElementAt can’t return the ball itself—but nonetheless close enough to make it
appear that collisions have occurred. Thus, for each of these four points, you need to:

1. Call getElementAt on that location to see whether anything is there.
2. If the value you get back is not null, then you need look no further and can take that

value as the GObject with which the collision occurred.
3. If getElementAt returns null for a particular corner, go on and try the next corner.
4. If you get through all four corners without finding a collision, then no collision exists.

It would be very useful to decompose this part of the program into a separate function
called getCollidingObject that returns the GObject colliding with the ball, if any, and
null otherwise. You could then use it in a declaration like

var collider = getCollidingObject();

which assigns that value to a variable called collider.

From here, the only remaining thing you need to do is decide what to do when a
collision occurs. There are only two possibilities. First, the object you get back might be
the paddle, which you can test simply by checking whether collider is equal to the
GObject for the paddle, which you’ve presumably stored in a local variable as part of
Stage 2.

 – 7 –

If the colliding object is the paddle, you need to bounce the ball so that it starts
traveling up. If it isn’t the paddle, the only other thing it might be is a brick, since those
are the only other objects in the world. Once again, you need to cause a bounce in the
vertical direction, but you also need to take the brick away. To do so, all you need to do
is remove it from the screen by calling the remove method on the GWindow object.

Stage 5—Finishing up
If you’ve gotten to here, you’ve done all the hard parts. There are, however, a few more
details you need to take into account:

• You have to take care of the case when the ball hits the bottom wall. In the prototype

you’ve been building, the ball just bounces off this wall like all the others, but that
makes the game pretty hard to lose. You’ve got to modify your program structure so
that it tests for hitting the bottom wall and stops the interval timer.

• You have to give the user three chances to remove the bricks. When the ball falls
through the bottom of the window, you should remove it from the window, create a
new ball just as you did at the beginning, and then wait for a click to start things up. If
the user has already had three chances, the game is over.

• You have to check for the other terminating condition, which is hitting the last brick.
How do you know when you’ve done so? Although there are other ways to do it, one
of the easiest is to have your program keep track of the number of bricks remaining.
Every time you hit one, subtract one from that counter. When the count reaches zero,
you must be done.

• You’ve got to test your program to see that it works. Play for a while and make sure
that as many parts of it as you can check are working. If you think everything is
working, here is something to try: Just before the ball is going to pass the paddle level,
move the paddle quickly so that the paddle collides with the ball rather than vice-versa.
Does everything still work, or does your ball seem to get “glued” to the paddle? If you
get this error, try to understand why it occurs and how you might fix it.

Working in pairs
You are encouraged—but not in any way required—to work on this assignment in pairs.
The biggest advantage of working together is that each of you can get help from the other
when you get stuck. In fact, just talking through a problem often reveals the solution
even if both of you have no idea of how to proceed.

If you submit this assignment as a pair, each of you is expected to make a significant
contribution toward solving that assignment. You should not claim to be part of a pair
submission if you did not contribute significantly to help write that program. If you
submit an assignment as a pair, you should make ONE submission and make sure
that the names of both members of the pair are listed in the comments of the
solution.		Both members of a pair will receive the same grade and have their interactive
grading session together.

If you work together, it is essential that both of you work on all parts of the
assignment. Although it may seem easier to divide the work and each write half of the

 – 8 –

methods, the problem is that each of you would be missing the lessons that come from
some part of the assignment. The final exam always includes a question that builds on
one of the assignments. If you haven’t even thought about that part of it, you’ll be
terribly behind.

If you are working in a pair and turn in an assignment late, both members of the pair
will be assessed late days. For example, if you turn in your assignment as a pair one day
late, then you each incur one late day. If you are out of free late days, but your partner
isn’t, then your assignment grade is penalized one grade bucket, but your partner would
simply use one late day (and thus not be penalized one grade bucket). So you can think
of late days being measured per student, and we apply any penalties individually	 for
submissions that are made in pairs. Note: you cannot transfer free late days to your
partner.

Strategy and tactics
Here are some survival hints for this assignment:

• Start as soon as possible. This assignment is due a week from Friday, which will be

here before you know it. If you wait until the day before this assignment is due, you
will have a very hard time getting it all together.

• Implement the program in stages, as described in this handout. Don’t try to get
everything working all at once. Implement the various pieces of the project one at a
time and make sure that each one is working before you move on to the next phase.

• Set up a milestone schedule. In the handout, I’ve suggested that you get the brick
display up and running by this Wednesday and the paddle moving by Friday. If you
do, you’ll have lots of time for the more interesting parts of the assignment and for
implementing extensions.

• Don’t try to extend the program until you get the basic functionality working. The
following section describes several ways in which you could extend the
implementation. Several of those are lots of fun. Don’t start them, however, until the
basic assignment is working. If you add extensions too early, you’ll find that the
debugging process gets really difficult.

Possible extensions
This assignment is perfect for those of you who are looking for + or (dare I say it) ++
scores, because there are so many possible extensions. Here are a few:

• Make the animation smoother. If you implement animation as described in Chapter

5—which is all that we require—the behavior of your Breakout game will be jerky.
The ball will sometimes appear to speed up and slow down, particularly when you
move the mouse. The best way to fix that problem is to update the position of the ball
according to how much actual time has elapsed rather than simply assuming that the
time between timer events is always exactly TIME_STEP milliseconds. In SJS, you can
get the current time by calling System.currentTimeMillis(), which returns the
number of milliseconds since midnight on January 1, 1970. If you keep track of the
previous time value in a variable, you can determine how much time has elapsed
between timer ticks by calling System.currentTimeMillis() again and subtracting

 – 9 –

the saved value from the new one. If you use that value to update the position of the
ball, it will appear to move at a more constant rate.

• Add messages. The sample application on the web site waits for the user to click the
mouse before serving each ball and announces whether the player has won or lost at
the end of the game. These are just GLabel objects (as described in Chapter 6) that
you can add and remove at the appropriate time.

• Improve the user control over bounces. The program gets rather boring if the only
thing the player has to do is hit the ball. It is far more interesting if the player can
control the ball by hitting it at different parts of the paddle. In the old arcade game, the
ball would bounce in both the x and y directions if you hit it on the edge of the paddle
from which the ball was coming.

• Add in the “kicker.” The arcade version of Breakout lured you in by starting off
slowly. But, as soon as you thought you were getting the hang of things, the program
sped up, making life just a bit more exciting.

• Keep score. You could easily keep score, generating points for each brick. In the
arcade game, bricks were more valuable higher up in the array, so that you got more
points for red bricks than cyan bricks.

• Use your imagination. What else have you always wanted a game like this to do?

