
Eric Roberts and Jerry Cain Handout #13
CS 106J April 17, 2017

Assignment #2—Simple JavaScript Programs

Due: Monday, April 24

Your job in this assignment is to write programs to solve each of these problems.

Problem 1 (Chapter 2, exercise 6, page 75)

It is a beautiful thing, the destruction of words.
—Syme in George Orwell’s 1984

In Orwell’s novel, Syme and his colleagues at the Ministry of Truth are engaged in
simplifying English into a more regular language called Newspeak. As Orwell describes
in his appendix entitled “The Principles of Newspeak,” words can take a variety of
prefixes to eliminate the need for the massive number of words we have in English. For
example, Orwell writes

Any word—this again applied in principle to every word in the language—could
be negatived by adding the affix un-, or could be strengthened by the affix plus-,
or, for still greater emphasis, doubleplus-. Thus, for example, uncold meant
“warm,” while pluscold and doublepluscold meant, respectively, “very cold” and
“superlatively cold.”

Create a file called Newspeak.js that defines three functions—negate, intensify, and
reinforce—that take a string and add the prefixes "un", "plus", and "double" to that
string, respectively. As an example, calling reinforce(intensify(negate("bad")))

returns "doubleplusungood".

Problem 2 (Chapter 2, exercise 10, page 76)
Use the GObject hierarchy to draw a rainbow that looks something like this:

Starting at the top, the seven bands in the rainbow are red, orange, yellow, green, blue,
indigo, and violet, respectively; cyan makes a lovely color for the sky. Remember that
this chapter defines only the GRect, GOval, and GLine classes and does not include a
graphical object that represents an arc. It will help to think outside the box, in a more
literal sense than usual.

 – 2 –

Rather than specify the exact dimensions of each circle (and there are indeed circles
here), play around with their sizes and positioning until you get something that matches
your aesthetic sensibilities. The only things we’ll be concerned about are:

• The top of the arc should not be off the screen.
• Each of the arcs in the rainbow should get clipped along the sides of the window, and

not along the bottom.

Problem 3 (adapted from Chapter 3, exercise 10, page 110)
In mathematics, there is a famous sequence of numbers called the Fibonacci sequence
after the thirteenth-century Italian mathematician Leonardo Fibonacci. The first two
terms in this sequence are 0 and 1, and every subsequent term is the sum of the preceding
two. Thus the first several terms in the Fibonacci sequence are as follows:

F0 = 0
F1 = 1
F2 = 1 (0 + 1)
F3 = 2 (1 + 1)
F4 = 3 (1 + 2)
F5 = 5 (2 + 3)
F6 = 8 (3 + 5)
F7 = 13 (5 + 8)

Write a function fib(n) that returns the nth Fibonacci number. Using the function
factorialTable on page 94 as a model, write a function fibonacciTable(min, max)
that uses console.log to display the terms of the Fibonacci sequence between the
indices min and max. A sample run of your program might look like this:

Problem 4 (Chapter 3, exercise 13, page 111)
Write a program that displays a pyramid on the graphics window. The pyramid consists
of bricks arranged in horizontal rows, arranged so that the number of bricks in each row
decreases by one as you move upward, as shown in the following sample run:

 – 3 –

The pyramid should be centered in the window both horizontally and vertically. Your
program should also use the following constants to make the program easier to change:

BRICK_WIDTH The width of each brick
BRICK_HEIGHT The height of each brick
BRICKS_IN_BASE The number of bricks in the base

Problem 5
Eric’s “Once upon a time” story on holism and reductionism included a passage from
Douglas Hofstadter’s Pulitzer-prize-winning book Gödel, Escher, Bach. Hofstadter’s
book contains many interesting mathematical puzzles, many of which can be expressed in
the form of computer programs. Of these, most require programming skills well beyond
the second week of CS 106J. In Chapter XII, Hofstadter mentions a wonderful problem
that is well within the scope of the control statements from Chapter 3. The problem can
be expressed as follows:

Pick some positive integer and call it n.
If n is even, divide it by two.
If n is odd, multiply it by three and add one.
Continue this process until n is equal to one.

On page 401 of the Vintage edition, Hofstadter illustrates this process with the following
example, starting with the number 15:

 15 is odd, so I make 3n+1: 46
 46 is even, so I take half: 23
 23 is odd, so I make 3n+1: 70
 70 is even, so I take half: 35
 35 is odd, so I make 3n+1: 106
 106 is even, so I take half: 53
 53 is odd, so I make 3n+1: 160
 160 is even, so I take half: 80
 80 is even, so I take half: 40
 40 is even, so I take half: 20
 20 is even, so I take half: 10
 10 is even, so I take half: 5
 5 is odd, so I make 3n+1: 16
 16 is even, so I take half: 8
 8 is even, so I take half: 4
 4 is even, so I take half: 2
 2 is even, so I take half: 1

 – 4 –

As you can see from this example, the numbers go up and down, but eventually—at least
for all numbers that have ever been tried—comes down to end in 1. In some respects,
this process is reminiscent of the formation of hailstones, which get carried upward by
the winds over and over again before they finally descend to the ground. Because of this
analogy, this sequence of numbers is usually called the Hailstone sequence, although it
goes by many other names as well.

Write a function hailstone that takes an integer and then uses console.log to display
the Hailstone sequence for that number, just as in Hofstadter’s book, followed by a line
showing the number of steps taken to reach 1. For example, your program should be able
to produce a sample run that looks like this:

The fascinating thing about this problem is that no one has yet been able to prove that it
always stops. The number of steps in the process can certainly get very large. How
many steps, for example, does your program take when n is 27? The conjecture that this
process always terminates is called the Collatz conjecture, and appears in the following
XKCD cartoon by Randall Munroe:

