
Eric Roberts and Jerry Cain Handout #12
CS 106J April 17, 2017

Functions and Libraries

Functions and Libraries

Eric Roberts and Jerry Cain
CS 106J

April 17, 2017

A Quick Review of Functions
•� You have been working with functions ever since you wrote

your first JavaScript program in Chapter 2.

•� At the most basic level, a function is a sequence of statements
that has been collected together and given a name. The name
makes it possible to execute the statements much more easily;
instead of copying out the entire list of statements, you can
just provide the function name.

•� The following terms are useful when working with functions:
–� Invoking a function by name is known as calling that function.
–� The caller passes information to a function using arguments.
–� When a function completes its operation, it returns to its caller.
–� A function gives information to the caller by returning a result.

Review: Syntax of Functions
•� The general form of a function definition is

function name(parameter list) {
 statements in the function body
}

where name is the name of the function, and parameter list is
a list of variables used to hold the values of each argument.

•� You can return a value from a function by including one or
more return statements, which are usually written as

return expression;

 where expression is an expression that specifies the value you
want to return.

Nonnumeric Functions
•� Although functions return a single value, that value can be of

any type.

•� Even without learning the full range of string operations
covered in Chapter 6, you can already write string functions
that depend only on concatenation, such as the following
function that concatenates together n copies of the string str:

function concatNCopies(n, str) {
 var result = "";
 for (var i = 0; i < n; i++) {
 result += str;
 }
 return result;
}

Exercise: Number Agreement
•� I’m sure that each of us has at some point used an application

that fails to distinguish between singular and plural values
when displaying a number followed by a noun, giving rise to
ungrammatical messages like “You have 1 turns left” instead
of using the singular form of the noun.

•� Write a function numberNoun(n, noun) that taken an integer n
and a string noun and returns a string consisting of the value
of n and noun, separated by a space and followed by "s" if
the value of n requires a plural noun. For example, calling
numberNoun(1, "turn") should return the string "1 turn";
calling numberNoun(6, "turn") should return "6 turns".

Predicate Functions
•� Functions that return Boolean values play a central role in

programming and are called predicate functions. As an
example, the following function returns true if the first
argument is divisible by the second, and false otherwise:

function isDivisibleBy(x, y) {
 return x % y === 0;
}

•� Once you have defined a predicate function, you can use it
any conditional expression. For example, you can print the
integers between 1 and 100 that are divisible by 7 as follows:

for (var i = 1; i <= 100; i++) {
 if (isDivisibleBy(i, 7)) {
 println(i);
 }
}

– 2 –

Using Predicate Functions Effectively
•� New programmers often seem uncomfortable with Boolean

values and end up writing ungainly code. For example, a
beginner might write isDivisibleBy like this:

function isDivisibleBy(x, y) {
 if (x % y === 0) {
 return true;
 } else {
 return false;
 }
}

•� A similar problem occurs when novices explicitly check to
see whether a predicate function returns true. You should be
careful to avoid such redundant tests in your own programs.

While this code is not technically incorrect, it is inelegant
enough to deserve the bug symbol.

Functions Returning Graphical Objects
•� When you are working with graphical programs, it is often

useful to write functions that return graphical objects, as in
this function from Chapter 2 that creates a filled circle:

function createFilledCircle(x, y, r, color) {
 var circle = GOval(x - r, y - r, 2 * r, 2 * r);
 circle.setColor(color);
 circle.setFilled(true);
 return circle;
}

•� Calling this function creates a circular GOval object of radius
r, centered at (x, y) and filled with the specified color.

•� You can use createFilledCircle to create as many circles
as you need. You can create and display a filled circle in a
single line, instead of the four lines you need without it.

The Purpose of Parameters

•� As a general rule, functions perform a service for their callers.
In order to do so, the function needs to know any details that
are necessary to carry out the requested task.

•� Imagine that you were working as an low-level animator at
Disney Studies in the days before computerized animation
and that one of the senior designers asked you to draw a filled
circle. What would you need to know?

•� At a minimum, you would need to know where the circle
should be placed in the frame, how big to make it, and what
color it should be. Those values are precisely the information
conveyed in the parameters.

“All right, Mr. Wiseguy,” she said, “you’re so clever,
you tell us what color it should be.”

Douglas Adams, The Restaurant
at the End of the Universe, 1980

—

Libraries and Interfaces
•� Modern programming depends on the use of libraries. When

you create a program, you write only a fraction of the code.

•� Libraries can be viewed from two perspectives. Code that
uses a library is called a client. The code for the library itself
is called the implementation.

•� The point at which the client and the implementation meet is
called the interface, which serves as both a barrier and a
communication channel:

interface

client implementation

Principles of Interface Design�
•� Unified. Every library should define a consistent abstraction

with a clear unifying theme. If a function does not fit within
that theme, it should not be part of the interface.

•� Simple. The interface design should simplify things for the
client. To the extent that the implementation is itself complex,
the interface must seek to hide that complexity.

•� Sufficient. For clients to adopt a library, it must provide
functions that meet their needs. If critical operations are
missing, clients may abandon it and develop their own tools.

•� Flexible. A well-designed library should be general enough to
meet the needs of many different clients.

•� Stable. The functions defined in a class exported by a library
should maintain the same structure and effect, even as the
library evolves. Making changes in a library forces clients to
change their programs, which reduces its utility.

What Clients Want in a Random Library�
•� Selecting a random integer in a specified range. If you want

to simulate the process of rolling a standard six-sided die, you
need to choose a random integer between 1 and 6.

•� Choosing a random real number in a specified range. If you
want to position an object at a random point in space, you
need to choose random x and y coordinates within whatever
limits are appropriate to the application.

•� Simulating a random event with a specific probability. If you
want to simulate flipping a coin, you need to generate the
value heads with probability 0.5, which corresponds to 50
percent of the time.

•� Picking a random color. In certain graphical applications, it
is useful to choose a color at random to create unpredictable
patterns on the screen.

– 3 –

/*
 * Returns a random integer in the range low to high, inclusive.
 */

function randomInteger(low, high) . . .

/*
 * Returns a random real number in the half-open interval [low, high).
 */

function randomReal(low, high) . . .

/*
 * Returns true with probability p. If p is missing, it defaults
 * to 0.5.
 */

function randomChance(p) . . .

/*
 * Returns a random color expressed as a string consisting
 * of a "#" followed by six random hexadecimal digits.
 */

function randomColor() . . .

The Client View of the Random Library Exercises: Generating Random Values
How would yo u go about solving each of the following problems?

1. Set the variable total to the sum of two six-sided dice.

2. Flip a weighted coin that comes up heads 60% of the time.

3. Change the fill color of rect to some randomly chosen color.

RandomLib.js: randomInteger

Example: randomInteger(1, 6)
 1. Calling Math.random() returns a value in the half-open interval [0, 1).

 2. Multiplying by (high - low + 1) gives a value in the interval [0, 6).

 3. Calling Math.floor truncates to an integer.

 4. Adding low gives an integer between 1 and 6.

0 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

1 2 3 4 5 6

RandomLib.js: randomReal

Example: randomReal(-1, 1)
 1. Calling Math.random() returns a value in the half-open interval [0, 1).

 2. Multiplying by (high - low) gives a value in the interval [0, 2).

 3. Adding low gives a value in the interval [–1, 1).

0 1

0 1 2

–1 0 1

RandomLib.js: randomChance

The first line establishes a default value of 0.5 for p.
Example: randomChance(0.75)
 1. Calling Math.random() returns a value in the interval [0, 1).

 2. The interval between [0, 0.75) represents 75% of the length.
0 1

0 1

RandomLib.js: randomColor

– 4 –

Geometrical Approximation of Pi�
(0, 1)

(1, 0)

Suppose you have a circular dartboard
mounted on a square background that
is two feet on each side.
If you randomly throw a series of darts
at the dartboard, some will land inside
the yellow circle and some in the gray
area outside it.
If you count both the number of darts
that fall inside the circle and the
number that fall anywhere inside the
square, the ratio of those numbers
should be proportional to the relative
area of the two figures.
Because the area of the circle is � and
that of the square is 4, the fraction that
falls inside the circle should approach

�
4

Running the Simulation�
(0, 1)

(1, 0)

Let’s give it a try.

The first dart lands inside the circle, so
the first approximation is that � � 4.

The second dart also lands inside, so
the second approximation is still � � 4.

The third dart is outside, which gives a
new approximation of � � 2.6667.

Throwing ten darts gives a better value
of � � 3.2.

Throwing 1000 darts gives � � 3.18.

Throwing 2000 gives � � 3.15.
inside total

0 0 1 1 2 2 2 3 8 10 795 1000 1575 2000

Exercise: Write PiApproximation �
Write a console program that implements the simulation described
in the preceding slides. Your program should use a named
constant to specify the number of darts thrown in the course of the
simulation.

JavaScript Console�

One possible sample run of your program might look like this:

Pi is approximately 3.164

Simulations that use random trials to derive approximate answers
to geometrical problems are called Monte Carlo techniques after
the capital city of Monaco.

