
Eric Roberts and Jerry Cain Handout #5
CS 106J April 7, 2017

Using JSKarel

This handout describes how to download and run the JavaScript version of Karel that we
will be using for the first assignment.

1. Getting started
Step 1. Download Java
Even though this class uses JavaScript rather than Java, the development environments
for both JSKarel and SJS are written in Java, which means that you will need to have
Java installed on your computer. To do so, follow the steps in Figure 1, which differ
slightly depending on whether you are running on a Macintosh or a Windows PC.

Figure 1. Downloading Java
Steps for downloading Java on a Macintosh
1. Go to the CS 106J website at http://cs106j.stanford.edu. Click on the Software link

and then click on the link Download to get the Java SDK installer for Mac.
2. Launch the installer and follow the instructions on the screen.

Steps for downloading Java on a Windows PC
1. Before installing a new version of the Java Runtime Environment (JRE), it is good

practice to remove any existing copies first. To do so
a. Open the control panel by clicking on Start, then Settings, then Control Panel.
b. Select Add or Remove Programs or Programs and Features.
c. From the list of programs you see, uninstall any occurrences of Java/J2SE

Runtime Environment, Java SDK, or Java Update. Note that the exact program
name may be slightly different or include a version number, but you generally
want to remove anything that includes those names. To remove a program,
click on the program name to highlight it and click the Remove or the Uninstall
button, or right-click on the program name and pick the Uninstall option.

2. Download and install the JRE from the CS 106J website.
a. Go to the CS 106J website at http://cs106j.stanford.edu. Click on the Software

link. Go to the section entitled “Installing Eclipse in Windows” and go down to
Step 2. There you will see two links (for the 32-bit version or 64-bit version) of
the JRE. You should click the version appropriate for your version of
Windows. After clicking this link a prompt will likely appear to ask you
whether you want to Run or Save the file. Click Run to begin the download and
installation process.

b. The Java JRE installation program should begin. Do a Typical installation, and
follow the rest of the instructions given in order to complete your installation.

 – 2 –

Step 2. Download JSKarel
Your next step is to download the JSKarel application. Go to http://cs106j.stanford.edu
and click on the Software link, which will bring up a directory containing two ZIP files,
one for Mac OS and one for Windows. Click on the appropriate file, which will
download it to your computer and unzip the contents in your downloads directory. In
either case, you should see an application icon for JSKarel that you can then move to
your desktop.

Step 3. Download the starter folder for the assignment
The first step in working with any assignment in CS 106J is to download the starter
project for that assignment. Go to the course web page, click on the Assignments link,
and then choose the entry for the current assignment. For this assignment, you need to
click on Assignment1.zip, which will download and unzip a folder called Assignment1
that contains four subfolders, one for each of the four programs on this assignment:
01-CollectNewspaper, 02-RepairTheQuad, 03-Checkerboard, and 04-FindMidpoint. Each
of these folders contains an unfinished Karel program file along with one or more world
files that allow you to test your programs in different situations.

Running the interpreter
Once you have finished downloading the starter folder, you’re ready to start programming.
Double-click on the JSKarel application icon to start the interpreter, which will display
the window shown in Figure 2, which is divided into four parts. In the upper left, you see
Karel’s world viewer, which allows you to watch Karel’s progress. Just under the world

Figure 2. The JSKarel interpreter

 – 3 –

viewer is the console window, which allows you to type in function calls and watch how
they affect Karel’s world. The right side of the application contains the editor window,
which is where you enter new programs and edit existing ones. Finally, the bottom of the
application contains the control strip, which contains a set of icons that allow you to
control the operation of the interpreter. Each of these icons is explained in a section at
some point in this handout.

5. Load the starter file for the program you want to work on

The button at the left of the control strip is the Load button, which brings up a
dialog box that allows you to select a program to edit. Use the dialog box to
navigate through the assignment folder until you find the file containing the

starter code for the problem you’re trying to solve. For example, if you decide wisely to
start at the beginning of the assignment, you should open the 01-CollectNewspaper folder
and then double-click on the file CollectNewspaper.k. Doing so loads that file into the
editor window, but also automatically loads the world file CollectNewspaper.w because
the name of the world matches the name of the program. After loading these files, the
application window has the contents shown in Figure 3.

As you might have expected, the file included in the starter project doesn’t contain the
finished solution. Instead, the body of the collectNewspaper function is simply a
comment reminding you that you need to fill in the details. If you look at the assignment
handout, you’ll see that the problem is to get Karel to collect the “newspaper” from
outside the door of its “house” as shown in the world viewer in Figure 3.

Figure 3. The JSKarel interpreter after loading the CollectNewspaper program

 – 4 –

Suppose that you just start typing—even though the assignment handout advises you
to decompose the problem first—and define the collectNewspaper function like this:

function collectNewspaper() {
 move();
 turnRight();
 move();
 turnLeft;
 move();
 pickBeeper();
}

The bug symbol off to the side lets you know that this program isn’t going to do exactly
what you want, but it is still interesting to see what happens if you try to run the program
in this buggy form.

Compiling your program

Before you can run your program, the JSKarel interpreter needs to process the
program to make sure that it follows the syntactic rules of the language. This
process of checking a program and translating it into an executable form is

called compilation. The Compile button at the right end of the control strip triggers the
compilation process. In this case, clicking Compile, discovers that there is a problem
with the line

turnLeft;

The editor highlights this line and pops up the following error dialog:

In this case, the error message guides you to the source of the problem, which is that
the statement is missing the parentheses after turnLeft. This type of error is called a
syntax error because you have done something that violates the syntactic rules of
JavaScript. Syntax errors are usually easy to discover because the JSKarel interpreter
finds them for you. You can then go back and add the missing parentheses, at which
point clicking Compile shows no errors.

Saving your program

Before you try to run your program, it makes sense to save the file so that your
changes are recorded in the file system. The Save button does just that. In this
case, clicking Save writes the updated version of CollectNewspaper.k. If you

create a new file, clicking Save brings up a file dialog and lets you choose the name of
the file.

Given that the JSKarel interpreter is new and experimental, it may crash from time to
time. You should save your files often to avoid losing your work.

 – 5 –

Running your program
There are two ways to run a program after it compiles successfully. The first is
to use the console window to enter the name of the main function, followed by
the empty parentheses that indicate a function call. You can, however, achieve

the same result by clicking the Run button, which automatically enters on the console the
name of the first function in the program file. If you do that with the current version of
the collectNewspaper function, things seem to go well for a few steps. Unfortunately,
given the program as it stands, Karel ends up one step short of the beeper. When Karel
then executes the pickBeeper command at the end of the function body, there is no
beeper to collect. As a result, Karel stops and displays an error dialog that looks like this:

This is an example of a logic error, which is one in which you have correctly followed
the syntactic rules of the language but nonetheless have written a program that does not
correctly solve the problem. Unlike syntax errors, the compiler offers relatively little
help for logic errors. The program you’ve written is perfectly legal. It just doesn’t do the
right thing.

Debugging

“As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had
to be discovered. I can remember the exact instant when I realized that a
large part of my life from then on was going to be spent in finding
mistakes in my own programs.”

—Maurice Wilkes, 1979

More often than not, the programs that you write will not work exactly as you planned
and will instead act in some mysterious way. In all likelihood, the program is doing
precisely what you told it to. The problem is that what you told it to do wasn’t correct.
Programs that fail to give correct results because of some logical failure on the part of the
programmer are said to have bugs; the process of getting rid of those bugs is called
debugging.

Debugging is a skill that comes only with practice. Even so, it is never too early to
learn the most important rule about debugging:

In trying to find a program bug, it is far more important to understand
what your program is doing than to understand what it isn’t doing.

Most people who come upon a problem in their code go back to the original problem and
try to figure out why their program isn’t doing what they wanted. Such an approach can
be helpful in some cases, but it is more likely that this kind of thinking will make you
blind to the real problem. If you make an unwarranted assumption the first time around,
you may make it again, and be left in the position that you can’t see any reason why your
program isn’t doing the right thing.

 – 6 –

When you reach this point, it often helps to try a different approach. Your program is
doing something. Forget entirely for the moment what it was supposed to be doing, and
figure out exactly what is happening. Figuring out what a wayward program is doing
tends to be a relatively easy task, mostly because you have the computer right there in
front of you.

Controlling the speed of your program

Often, you can get a great deal of information about what your program is doing
just by watching it run. At some point, your program goes off track, which is
often easy to spot in Karel’s world. It may help, however, to slow Karel down

so that you can watch it more carefully. The Speed button includes a speedometer-like
needle that you can drag around in the button to change the speed. If you turn the dial to
the left, Karel runs more slowly. If you turn it to the right, it runs more quickly.

Going through your program step by step
An even more useful debugging strategy involves having the Karel interpreter run your
program one step at a time so that you can see what it’s doing. You can stop the program
at a particular line by clicking in the gray area at the left of the editor window. If that line
corresponds to a program statement, the Karel editor will place a breakpoint on that line
(you can clear an existing breakpoint by clicking on it again), which forces the interpreter
to stop when it hits that line in the program. At that point, you can use either of two
tools to step through your program.

Advancing one step

The Step button causes the Karel interpreter to advance by a single step. If the
current line is one of Karel’s primitive commands, Karel simply executes it and
waits for the next command. If the current line is a function that you have

defined, Karel starts the process of calling that function and then stops again before
executing the first line.

Stepping over the highlighted line

The Step Over button causes the Karel interpreter to execute the highlighted
line. If the current line is one of Karel’s primitive commands, this button
behaves exactly like the Step button. If the current line is a function that you

have defined, Karel executes the entire function call before stopping. This feature allows
you to execute an entire function at once, which is particularly useful if that function is
one that you already know is working, such as moveToWall.

Creating new programs

Although you don’t need to create any new program files for the assignment,
you will need to do so if you enter the Karel contest or just want to write some
programs of your own. The New button creates an empty file in the editor that

you can then edit and save.

 – 7 –

Creating and editing worlds
The one other thing you need to know about—particularly if you’re planning on
entering the Karel contest—is how to create new worlds and edit existing ones.
The Edit World button brings up editing palette that contains a whole bunch of

icons that allow you to edit the current world. Here is a quick tour of the editor controls
at your disposal:

• The large square containing a pair of numbers near the right of the palette allows you

to specify the size of the world. If you click on this icon, you can type in a new size,
which consists of two integers separated by an x. The first integer is the number of
avenues; the second integer is the number of streets. Changing the size of the world
erases any beepers and interior walls, so you need to set the world size before editing.

• The and buttons allow you to create and remove walls. To create walls, select
the Draw Wall tool. If you then go to the map and click on the spaces between corners,
walls will be created in those spaces. If you later need to remove those walls, you can
click on the Erase Wall tool and then go back to the map to eliminate the unwanted
walls.

• The five beeper-shaped tools allow you change the number of beepers on a square.
The empty beeper tool places a single beeper on any corner you select. The tools
marked with the + and – symbols add a beeper or remove one from a corner. The tools
marked with 0 and ∞ set the beeper count on a corner to 0 or infinity, respectively. If
you select one of these tools and then click on the beeper-bag icon in the tool area, you
can adjust the number of beepers in Karel’s bag.

• The four Karel-shaped tools allow you to change the direction Karel is facing. If you
need to move Karel to a new starting position, click on the Karel in the world view and
drag it to some new location. If you need to put beepers down on the corner where
Karel is standing, you have to first move Karel to a different corner, adjust the beeper
count, and then move Karel back.

• The various colored squares allow you to paint the corners of Karel’s world, as
described in the Karel Contest handout.

• When you’re finished, you can select the Save World tool to save the new world in a
file. The Don’t Save World tool marked with the red x returns to the Karel interpreter
with the updated world, but does not save it in a file.

These tools should be sufficient for you to create any world you’d like, up to the
maximum world size of 50x50. Enjoy!

