Eric Roberts and Jerry Cain Handout #52A
CS 106J June 9, 2017

Answers to Practice Final #2

Review session: Sunday, June 11, 6:00-8:00r.m. (Gates B-12)
Scheduled final: Wednesday, June 14, 8:30-11:30a.m. (Lathrop 282)

Problem 1—Short answer (10 points)

la) array

0 12 [22 [30 [36 | 40 | 42 | 42 | 40 | 36 | 30 | 22 | 12

0 1 2 3 4 5 6 7 8 9 10 11 12

The values for this problem (which was taken from an autumn quarter final and thus
came at the right season) indicate the total number of gifts in each category if you take
the words to “The Twelve Days of Christmas” literally. At the end of our true love’s
gift-giving spree, the total haul contains:

12 Partridges in pear trees 42 Swans-a-swimming
22 Turtle doves 40 Maids-a-milking

30 French hens 36 Ladies dancing

36 Calling birds 30 Lords-a-leaping

40 Gold rings 22 Pipers piping

42 Geese-a-laying 12 Drummers drumming

Charles M. Schulz offered a lovely rendition of this problem in 1963:

WELL, IT TOOK \ | [ALL INALL, HE GAVE HER

ME SIX WEEKS, | | [TWENTY-TWO TURTLE DOVES,
BUT T FINALLY | | | THIRTY FRENCH HENS, THIRTY-$1X
FIGURED IT CALLING BIRDS, FORTY GOLD RINGS,
FORTY-TWO GEESE-A-LAYING....
\—————w—w

FORTY-TIO SWANS-A-SWIMAING, | I IDHEN T 6Row U

e e gt
LADIES DANCING, TWENTY-TWg LORDS, EOEARCH <ullty
A-LEAPING TIELVE FIDDLERS FIDDLING,
AND TUELYE PARTRIEES I PEAR TREES

‘ﬁ
‘(
\ \

1b) The issue here is figuring out exactly which variable or field each occurrence of x
refers to. The answer is the string consisting of """ + 10 + (11 * 6), or "1066".

Problem 2—Simple graphics (15 points)

/*
* Creates a GCompound object that serves as a button. The button is
* composed of two semicircular GArcs that form the ends of the button,
two GLines that mark the top and bottom edges of the button, and
* a GLabel that shows the button label.
*/

*

function createButton(str) {
var button = GCompound();
var label = GLabel (str);
label.setFont (BUTTON_FONT) ;
var len = label.getWidth();
var r = BUTTON_ HEIGHT / 2;
var leftEnd = GArc(0, O, 2 * r, 2 * r, 90, 180);
var rightEnd = GArc(len, 0, 2 * r, 2 * r, 90, -180);
var toplLine = GLine(r, 0, r + len, 0);
var bottomLine = GLine(r, 2 * r, r + len, 2 * r);
button.add (leftEnd) ;
button.add (rightEnd) ;
button.add (topLine);
button.add (bottomLine) ;
button.add(label, r, r + BUTTON_ LABEL_DY);
return button;

Problem 3—Interactive graphics (20 points)

/*

*

File: GraphicNim. js
*

* This program plays a graphical version of the game of Nim.

*/
import "graphics";
/* Constants */

const GWINDOW WIDTH = 496;

const GWINDOW_HEIGHT = 75;

const N_COINS = 11;

const COIN_SIZE = 32;

const COIN_FILL COLOR = "LightGray";

/* Derived constants */
const COIN SEP = (GWINDOW WIDTH - N _COINS * COIN SIZE) / (N_COINS + 1);
/* Main program */

function GraphicNim() {
var gw = GWindow (GWINDOW_WIDTH, GWINDOW_HEIGHT) ;
var coins = createCoinArray (gw);
var clickAction = function(e) {
var coin = gw.getElementAt (e.getX(), e.get¥());
if (coin !== null) {
var index = coins.indexOf (coin);
var coinsToRemove = coins.length - index;
if (coinsToRemove <= 3) {
for (var i = 0; i < coinsToRemove; i++) {
gw.remove (coins.pop());

}

}
};
gw.addEventListener ("click", clickAction);
}

/*
* Creates the initial array of coins and places them in a line across
* the graphics window. This function returns the array of coins.
*/
function createCoinArray(gw) {
var array = [1;

var y = (GWINDOW_HEIGHT - COIN_SIZE) / 2;

for (var i = 0; i < N_COINS; i++) {
var x = (i + 1) * COIN SEP + i * COIN SIZE;
var coin = GOval (COIN_SIZE, COIN_SIZE);
coin.setFilled (true);
coin.setFillColor (COIN_FILL_COLOR) ;
gw.add (coin, x, y);
array.push (coin);

}

return array;

Problem 4—Strings (15 points)

/*

* and periods.

*/

function createTocEntry(title, page) {
var entry = title + " ";
if (title.length % 2 === 0) entry += " ";
var pageString = " " + page;

for (var i = 0; i < gap; i++) {
entry += (i % 2 === 0) ? "." : " ";
}
entry += pageString;
return entry;

* Creates a table of contents entry in which the chapter title and the
* page number are separated by a leader composed of alternating spaces

var gap = TOC_LINE LENGTH - entry.length - pageString.length;

Problem 5—Arrays (10 points)

/*

* are shifted out of the array reappear at the end.

*/

function rotateArray (array, k) {
for (var i = 0; i < k; i++) {
array.push (array.shift ());

}

* Rotates the elements of the array leftward k positions.

Elements that

Problem 6—Working with data structures (15 points)

* Returns the refund if someone tried to sell nShares of Facebook stock
* at timeOrdered on the specified date, but Morgan Stanley did not
* complete the sale until timeExecuted.

*/
function facebookRefund (nShares, date, timeOrdered, timeExecuted) ({
var priceOrdered = lookupSharePrice (date, timeOrdered);
var priceExecuted = lookupSharePrice (date, timeExecuted);

var refund = nShares * (priceOrdered - priceExecuted);
if (refund < 0) refund = 0;
return refund;

}
/*

* Looks up the Facebook share price for the specified date and time.

*/

function lookupSharePrice (date, time) {
for (var i = 0; i < FB_SHARE_PRICE_DATA.length; i++) {
var entry = FB_SHARE PRICE_DATA[i];
if (entry.date === date && entry.time === time) ({
return entry.price;
}
}

alert ("No record for " + data + " " + time);

Problem 7—Reading data structures from files (15 points)

/*
* Reads files from the specified directory into the database of letters.
* The file names in the directory are assumed to be consecutive integers
* beginning with 1, up to the number of letters in the directory. The
* return value is an array of letters in which the element at the index
* given by the file name is an aggregate consisting of header fields and
* the special field body, which contains an array of the lines in the
* message body. The entry at index 0 is set to null so that the indices
* and file names match.
*/
function readLetters(dir) {
var letters = [null];
var index = 1;
var lines = File.readLines(dir + "/" + index);
while (lines !== undefined) {
letters.push (parseLetter (lines));
index++;
lines = File.readLines(dir + "/" + index);

}

return letters;

/*
* Parses an array of lines into the internal data structure for a
* letter. The letter begins with a set of headers, each of which
* consists of a key, a colon, and the value of the header. The
* headers are followed by a blank line and then by the body of the
* message.
*/
function parselLetter (lines) {
var letter = { };
var line = lines.shift();
while (line !== "") {
var colon = line.indexOf(":");
if (colon === -1) alert("Missing colon in header");
var key = line.substring(0, colon) .trim();
var value = line.substring(colon + 1) .trim();
letter[key] = value;
line = lines.shift();

}
letter.body = lines;

return letter;

