
Eric Roberts and Jerry Cain Handout #49
CS 106J June 2, 2017

Adventure Workshop

Adventure Workshop
+

Using Interactors

Eric Roberts and Jerry Cain
CS 106J

June 2, 2017

The Motivation for this Session
•� We have seen a number of you in office hours this week, and

our sense is that there is more confusion than we have seen in
past years. Adventure is an old, highly successful assignment,
but the JavaScript implementation is new and clearly requires
more clarification than the handout provides.

•� This class focuses on the following questions, which seem to
be the most problematic:
–� What is the role of the magic stubs and where do they end up?
–� What is an object anyway?
–� Why are the fields stored explicitly rather than in the closure?
–� What do the methods in the starter files return?
–� How do I get data from a file into an object?

•� We’ll answer these questions in class today and try to address
any others that you have.

The Role of the Magic Stubs

AdvRoomMagicStub AdvObjectMagicStub AdvGameMagicStub

AdvGame

Contains the code and data
necessary to play the game.

AdvRoom

Maintains the data structure
for each room in the cave.

AdvObject

Maintains the data structure
for each object that can be
carried by the player.

•� The purpose of the magic stubs is to ensure that Adventure
works from the moment you start to code it and that it
continues to work throughout the development process.

•� Your goal is to make the stubs disappear.

•� In your final version, there should be no calls to any of the
stub methods. Instead, the factory methods should create
empty objects and then add the necessary fields to them.

What Is an Object Anyway?
•� Much of the confusion we have seen is simply that many of

you are confused about what an object is.

•� That confusion is exacerbated by the fact that JavaScript uses
the same data structure to cover three distinct usage patterns:
–� Objects as aggregates or collections of data
–� Objects as maps that link keys and values
–� Objects as encapsulated values with hidden internal fields

•� In thinking about the Adventure assignment, it is probably
most valuable to focus on objects as aggregates. For
example, each AdvObject is an aggregate with three fields:

name: "KEYS"

description: "a set of keys"

initialLocation: "insideBuilding"

Why Are the Fields Explicit?
•� In class, we went to great lengths to show how JavaScript

makes it possible to hide private data in the closure. We then
seem to abandon that idea in Adventure.

•� The reason behind this decision is that private fields stored in
a closure are inaccessible to every other function, which
means that the magic stub can’t see them either, even though
it needs access to those fields to do its job.

•� In the next generation of CS 106J, we can fix this problem by
changing the set of methods that the class exports so that the
stub—just like any other function—can do everything it needs
to do through methods.

•� For now, you should keep the factory methods as they are and
have the functions readRoomsFile and readObjectsFile
assign values directly to individual fields.

What Do the Starter File Methods Return?
•� The starter files define several methods that are implemented

using functions in the AdvMagicStub. The comments tell you
what those methods return, but here is a quick summary:
–� The AdvGame factory method returns an object that contains

everything you need to play the game. The only method that is
specified is play, but you will want helper methods as well.

–� The readSynonyms file returns a map from alternative forms
of the words used in the game to their primary forms.

–� The AdvRoom factory method returns an empty AdvRoom
object that defines the necessary methods.

–� The readRoomsFile function reads in all the rooms and
returns a map from room names to AdvRoom objects. The map
also includes a "START" key that indicates the first room.

–� The AdvObject factory method returns an empty AdvObject.
–� The readObjectsFile function reads in all the objects and

returns a map from object names to AdvObjects.

– 2 –

How Do I Read Files?
•� The only functions in AdvRoom.js and AdvObject.js that

are at all long are readRoomsFile and readObjectsFile.

•� These functions have to read a data file into an internal
structure, which in both cases is a map from names to objects
of the relevant type.

•� These functions must include a loop that reads each entry in
the file, where an entry is all the data pertaining to one room
or one object. Your implementation must call the appropriate
factory method (AdvRoom or AdvObject) for each entry.

•� These functions are much easier to write if you use the shift
method to read each line from an array of lines than if you try
to use array indexing. The best model is the TMCourse.js
file as it was presented in class, which is reprised on the next
two slides.

/*
 * File: TMCourse.java
 * -------------------
 * This class defines the data structure for a course for use with
 * the TeachingMachine program.
 */

/* Constants */

const MARKER = "-----";

/*
 * Creates a new course for the teaching machine by reading the
 * data from the specified file, which consists of questions and
 * their accepted answers.
 */

function TMCourse(filename) {
 var lines = File.readLines(filename);
 if (lines === undefined) return null;
 var nLines = lines.length;
 var title = lines.shift();
 var questions = { };

Code for the TMCourse Class

 var line = lines.shift();
 while (line !== undefined) {
 var qnum = parseInt(line);
 var text = [];
 while (line !== undefined && line !== MARKER) {
 text.push(line);
 line = lines.shift();
 }
 var question = TMQuestion(text);
 line = lines.shift();
 while (line !== undefined && line !== "") {
 var colon = line.indexOf(":");
 var response = line.substring(0, colon).toLowerCase().trim();
 var nextQuestion = parseInt(line.substring(colon + 1).trim());
 question.addAnswer(response, nextQuestion);
 line = lines.shift();
 }
 questions[qnum] = question;
 line = lines.shift();
 }
 return {
 getTitle: function() { return title; },
 getQuestion: function(qnum) { return questions[qnum]; }
 };
}

Code for the TMCourse Class

