
Eric Roberts and Jerry Cain Handout #44
CS 106J May 24, 2017

Assignment #6—Adventure

The vitality of thought is in adventure.
— Alfred North Whitehead, Dialogues, 1953

Due: Wednesday, June 7, 5:00P.M.
Last possible submission date: Friday, June 9, 5:00P.M.
Note: This assignment may be done in pairs

Welcome to the final assignment in CS 106J! Your mission in this assignment is to write
a simple text-based adventure game in the tradition of Will Crowther’s pioneering
“Adventure” program of the early 1970s. In games of this sort, the player wanders
around from one location to another, picking up objects, and solving simple puzzles. The
program you will create for this assignment is considerably less elaborate than
Crowther’s original game and it therefore limited in terms of the type of puzzles one can
construct for it. Even so, you can still write a program that captures much of the spirit
and flavor of the original game.

Because this assignment is large and detailed, it takes quite a bit of writing to describe
it all. This handout contains everything you need to complete the assignment, along with
a considerable number of hints and strategic suggestions. To make it easier to read, the
document is divided into the following sections:

1. Overview of the adventure game .. 2
2. The Adventure.js program .. 5
3. The AdvRoom and AdvMotionTableEntry classes 6
4. The AdvObject class ... 11
5. The AdvGame class .. 12
6. Strategy and tactics ... 15
7. Administrative rules (partners, late days, and the like) 16

Try not to be daunted by the size of this handout. The code is not as large as you
might think. If you start early and follow the suggestions in the “Strategy and tactics”
section, things should work out well.

 – 2 –

Section 1
Overview of the Adventure Game

The adventure game you will implement for this assignment—like any of the text-based
adventure games that were the dominant genre before the advent of more sophisticated
graphical adventures like the Myst/Riven/Exile series—takes place in a virtual world in
which you, as the player, move about from one location to another. The locations, which
are traditionally called “rooms” even though they may be outside, are described to you
through a written textual description that gives you a sense of the geography. You move
about in the game by giving commands, most of which are simply an indication of the
direction of motion. For example, in the classic adventure game developed by Willie
Crowther, you might move about as follows:

In this example, you started outside the building, followed the road up the hill by
typing WEST, and arrived at a new room on the top of the hill. Having no obvious places
to go once you got there, you went back toward the east and ended up outside the
building again. As is typical in such games, the complete description of a location
appears only the first time you enter it; the second time you come to the building, the
program displays a much shorter identifying tag, although you can get the complete
description by typing LOOK, as follows:

From here, you might choose to go inside the building by typing IN, which brings you to
another room, as follows:

 – 3 –

In addition to the new room description, the inside of the building reveals that the
adventure game also contains objects: there is a set of keys here. You can pick up the
keys by using the TAKE command, which requires that you specify what object you’re
taking, like this:

The keys will, as it turns out, enable you to get through a grating at the bottom of the
streambed that opens the door to Colossal Cave and the magic it contains.

In these examples, user input appears in uppercase so that it is easier to see. Your
program should recognize commands in lowercase or in some combination of the two.

Overview of the data files
Like the teaching machine program in Chapter 8, the adventure program you will create
for this assignment is entirely data driven. The program itself doesn’t know the details of
the game geography, the objects that are distributed among the various rooms, or even the
words used to move from place to place. All such information is supplied in the form of
data files, which the program uses to control its own operation. If you run the program
with different data files, the same program will guide its players through different
adventure games.

To indicate which data files you would like to use, the adventure program begins by
asking you for the name of an adventure. To get the adventure game illustrated above,
you would begin by typing Crowther, which selects the collection of files associated with
a relatively sizable subset of Will Crowther’s original adventure game. For each
adventure, there are between one and three data files, all of which contain the name of the
adventure as a prefix. For the Crowther adventure, for example, these files are

• CrowtherRooms.txt, which defines the rooms and the connections between them. In

these examples, you have visited three rooms: outside of the building, the top of the
hill, and the inside of the well house.

• CrowtherObjects.txt, which specifies the descriptions and initial locations of the
objects in the game, such as the set of keys.

• CrowtherSynonyms.txt, which defines several words as synonyms of other words so
you can use the game more easily. For example, the compass points N, E, S, and W are
defined to be equivalent to NORTH, EAST, SOUTH, and WEST. Similarly, if it makes sense
to refer to an object by more than one word, this file can define the two as synonyms.
As you explore the Crowther cave, for example, you will encounter a gold nugget, and
it makes sense to allow players to refer to that object using either of the words GOLD or
NUGGET.

These data files are not Java programs, but are instead text files that describe the structure
of a particular adventure game in a form that is easy for game designers to write. The

 – 4 –

adventure program reads these files into an internal data structure, which it then uses to
guide the player through the game.

Your program must be able to work with any set of data files that adhere to the rules
outlined in this handout. In addition to the three files with the Crowther prefix, the
starter folder also contains file named TinyRooms.txt that contains only three rooms
with no objects and no synonyms and a set of three files with the prefix Small that define
a much smaller part of the Crowther cave. Your program should work correctly with any
of these files, as well as other adventure games that you design yourself.

The detailed structure of each data file is described later in this handout in conjunction
with the description of the module that processes that particular type of data. For
example, the rooms data file is described in conjunction with the AdvRoom class.

Overview of the class structure

The adventure game is divided into the following files:

• Adventure.js—This file contains the main function and all the import statements.

The code provided in the starter file is complete, and you shouldn’t need to change
anything in this file at all.

• AdvGame.js—This file defines the AdvGame class, which implements the game. The
class exports two methods: the AdvGame factory method which creates the internal data
structures from the data files and the play method called by the main program to play
the game. This class is the most complex one in the assignment and is yours to write,
although this handout offers suggestions for how to decompose the problem in the
section on “Strategy and tactics.” The AdvGame.js file also exports the function
readSynonymFile, which reads a map of word equivalences from a data file.

• AdvRoom.js—This file defines the AdvRoom class, which represents a single room in
the game. This class is also yours to write. The methods you need to export are all
listed in the comments. All you have to do is implement them.

• AdvMotionTableEntry.js—This file defines a simple class that encapsulates the
information the game needs to keep track of a direction, a destination room, and an
optional special object required for travel. This class has been implemented for you
and is supplied in its finished form in the starter folder. Although there may be some
utility in having you write the AdvMotionTableEntry class, it also serves as a good
example that you can use as a model for your own classes.

• AdvObject.js—This file defines the AdvObject class, which represents an objects in
the game. As with the AdvRoom class, you have to implement this class although the
exported methods are specified in the comments.

• AdvMagicStub.js—This file contains complete implementations of all the classes you
have to write, but that implementation is written in a compiled form that will offer no
assistance whatever in writing your own solution. The value of advMagicStub.js is
that it ensures that the Adventure game works from the very first moment that you
download it from the web site. Your job is to replace the functions provided by
AdvMagicStub.js one at a time until the program is running only your own code.

The structure of each of these files is described in detail in one of the following sections.

 – 5 –

Section 2
The Adventure.js File

The main program lives in a file called Adventure.js, which we have supplied in its
complete form. The contents of the Adventure.js file appear in Figure 1. The main
program has the following responsibilities:

1. Ask the user for the name of an adventure, which indicates what data files to use
2. Call the factory method for AdvGame to initialize the game and read the data files
3. Invoke the method game.play to play the game

The only part of the Adventure.js file that is likely to seem unfamiliar is the process
it goes through to read a line from the console. In most languages, the code would
simply ask the user for the name of the adventure, wait for the user to enter a line, and
then continue on. JavaScript does not allow a process to wait but instead relies on events
and callback functions. The main program defines a function named callback and
passes that function to the console.requestInput method, as described in section 5.7 of
the text. When the user enters a line, JavaScript invokes the callback function, passing
in the input line. If that line contains the name of an adventure game that the AdvGame
factory method can read, the callback function invokes the play method on the
resulting object. If not, callback reports the failure and gives the user another chance.
You will have to write similar code in AdvGame.js to read the user’s commands.

Figure 1. The Adventure.js starter file

 – 6 –

Section 3
The AdvRoom and AdvMotionEntry Classes

The AdvRoom class represents an individual room in the game. The AdvRoom.js starter
file includes a definition of the AdvRoom factory method, which begins—at least in the
starter file—with the following line:

var room = AdvRoomMagic();

This line defines the variable room as the result of calling AdvRoomMagic, which creates
the entire data structure for the room but keeps the details of that structure hidden inside
the stubs. As you work through the implementation, you will add new methods to the
room object that replace the magical versions provided by AdvRoomMagic. When you
have finished defining all the necessary methods, you can change the first line to the
following one, which creates an empty structure that the subsequent code fills in:

var room = { };

Each room in the game is characterized by the following properties:

• A room name, which is a string without any spaces used to identify the room
• A short description, which is a one-line string identifying the room
• A long description, which is an array of lines describing the room
• An array of objects contained in the room
• A flag indicating whether the room has been visited
• A motion table specifying the exits and where they lead

The AdvRoom class stores this information in fields within each object and not within the
closure of the AdvRoom factory method. Closures prohibit external access to the values of
the field, which is ordinarily a good thing. In this case, however, the AdvRoomMagic class
needs access to these fields and must know the correct field names. Those names are
given in the starter file, but their values are all initialized to null, as shown in Figure 2.

The field definitions in the starter file are followed by a list of the methods that the
AdvRoom class must export. Each of these methods includes a descriptive comment, but
the assignment statement that defines the method has been commented out. Your job is
to replace each of these methods—preferably one at a time—with your own code that
implements the necessary operations. For easier reference, a short description of each
method appears in Figure 3 at the top of the next page.

Figure 2. Data fields defined by the AdvRoom starter file

 – 7 –

The rooms data file
As in the teaching machine example in Chapter 8, the information for the individual
rooms is not part of the program but is instead stored in a data file. One of your
responsibilities in completing the AdvRoom.js implementation is to replace the magical
definition of the readRoomsFile with one that reads the data from the file whose name is
formed by concatenating the name of the adventure with the string "Rooms.txt". The
result of the readRoomsFile function is a JavaScript map in which the keys are the room
names and the values are the AdvRoom objects that contain the data.

At first glance, the data files for rooms look almost exactly like those for the teaching
machine. For example, TinyRooms.txt looks like this:

Figure 3. Methods in the AdvRoom class

 – 8 –

The only obvious differences between the external file format for the teaching machine
and the adventure game are

1. The rooms are named rather than numbered, which makes the files easier to write.
2. The title line is missing (the TeachingMachine.js program requires a course title on

the first line).
3. Each of the entries for an individual room includes a short description (such as

Outside building or End of road) as well as the extended description.

These changes are all minor. Even in the teaching machine example, the question
numbers were stored in a map so that the course designer could choose any convenient
numbering scheme. Storing room names in a map is just as easy.

In thinking about an adventure game—particularly as the player, but also as the
implementer—it is important to recognize that the directions are not as well-behaved as
you might like. There is no guarantee that if you move from one room to another by
moving north, you will be able to get back by going south. The best way to visualize the
geographic structure of an adventure game is as a collection of rooms with labeled arrows
that move from one room to another, as illustrated by the following diagram of the
connections defined in TinyRooms.txt:

Extensions to the connection structure
If the adventure program allowed nothing more than rooms and descriptions, the games
would be extremely boring because it would be impossible to specify any interesting
puzzles. For this assignment, you are required to implement the following features that
provide a basis for designing simple puzzles that add significant interest to the game:

• Locked passages. The connection data structure must allow the game designer to

indicate that a particular connection is available only if the player is carrying a
particular object. That object then becomes the key to an otherwise locked passage. In
the rooms file, locked passages are indicated by including an object name after a slash.

• Forced motion. If the player ever enters a room in which one of the connections is
associated with the motion verb FORCED (and the player is carrying any object that the
FORCED verb requires to unlock the passage) the program should display the long
description of that room and then immediately move the player to the specified
destination without waiting for the user to enter a command. This feature makes it
possible to display a message to the player and uses precisely the same strategy that
Willie Crowther used in his original implementation.

Examples of each of these features appear in the excerpt from the SmallRooms.txt

data file shown in Figure 4 at the top of the next page. If the player is in the room named

 – 9 –

OutsideGrate and tries to go down, the following two lines in the connection list come
into play:

DOWN BeneathGrate/KEYS
DOWN MissingKeys

The first line is used only if the player is carrying the keys. In this case, a player holding
the keys would move into the room named BeneathGrate. If the player is not carrying
the keys, the DOWN command takes the user to a room named MissingKeys. Because the
motion entries for the room named MissingKeys include the verb FORCED, the program
prints out the long description for that room and then moves the player back to the room
named OutsideGrate, as shown in the following sample run:

Figure 4. Excerpt from SmallRooms.txt

 – 10 –

It is possible for a single room to use both the locked passage and forced motion
options. The CrowtherRooms.txt file, for example, contains the following entry for the
room just north of the curtain in the building:

The effect of this set of motion rules is to force the user to the room named Curtain2 if
the user is carrying the nugget and to the room named MissingTreasures otherwise.
When you are testing your code for locked and forced passages, you might want to pay
particular attention to the last eight rooms in the CrowtherRooms.txt. These rooms
implement the shimmering curtain that marks the end of the game.

The other special case you need to implement is some way to stop the program. The
motion entries in the rooms file include a special room name EXIT, which is used to stop
the game. Your code needs to check for EXIT and then stop asking for new commands.

The AdvMotionTableEntry class
There are several possible strategies one might have chosen to represent the table of
connections in each room to its neighbors. In this assignment, you should store the room
connections as an array whose elements are instances of AdvMotionTableEntry. The
complete definition of this class is included with the starter file and appears in full in
Figure 5. You could easily have designed this class yourself, but we decided to give it to
you to make the assignment a bit simpler.

Figure 5. The AdvMotionTableEntry class

 – 11 –

Section 4
The AdvObject Class

The AdvObject class keeps track of the information about an object in the game. The
amount of information you need to maintain for a given object is considerably less than
you need for rooms, which makes both the internal structure and its external
representation as a data file much simpler. The entries in the object file consist of three
lines indicating the word used to refer to the object, the description of the object that
appears when you encounter it, and the name of the room in which the object is initially
located. For example, the data file SmallObjects.txt looks like this:

This file indicates that the keys start out in the room named InsideBuilding, the lamp
initially resides in the room named BeneathGrate, and the rod can be found in the room
named DebrisRoom. The entries in the file may be separated with blank lines for
readability, as these are here; your implementation should work equally well if these
blank lines are omitted. You may assume that there is only one blank line between each
entry and there are no extraneous blank lines at the end of the file.

The objects, of course, will move around in the game as the player picks them up or
drops them. Your implementation must therefore provide a facility for storing objects in
a room or in the user’s inventory of objects. The easiest approach is to use a JavaScript
array, which makes it easy to add and remove objects. Short descriptions of the methods
in the AdvObject class appear in Figure 6.

The AdvObject class also contains a stub implementation of the readObjectsFile
function, which reads in the object data file. As with readRoomsFile, the result should
be a JavaScript map in which the keys are the object names and the values are the objects
themselves. If the file describing the objects does not exist (as is true for the Tiny
adventure), readObjectsFile should return an empty object.

Figure 6. Methods in the AdvObject class

 – 12 –

Section 5
The AdvGame Class

The AdvGame class contains most of the code you have to write for this assignment. This
is the class that assembles the data structures, reads commands from the user, and
executes those commands. The starter version of AdvGame.js appears in Figure 7, in
which both the AdvGame class and the readSynonymsFile are implemented as stubs.

As noted in the introduction to this assignment, implementing the AdvGame class
represents the lion’s share of the work. Before you start in on the code, it will simplify
your life considerably if you spend some time thinking about what information you need
to maintain and how you can best decompose the play method into reasonably sized
pieces. The most relevant model is the teaching machine described in Chapter 8, but
there are several important differences that you will have to keep in mind.

Figure 7. The starter code for the AdvGame.js file

 – 13 –

The factory method for AdvGame must read each of the three data files for the
adventure and use them to initialize fields in the game object: one for rooms, one for
objects, and one for synonyms. The only file whose format you haven’t seen is the
synonyms file, which is used to define abbreviations for commands and synonyms for the
existing objects. The synonym file consists of a sequence of lines in which one word is
defined to be equal to another. The CrowtherSynonyms.txt file, for example, appears in
Figure 8. This file shows that you can abbreviate the INVENTORY command to I or the
NORTH command to N. Similarly, the user can type GOLD to refer to the object defined in
the object file as NUGGET. If the synonyms file doesn’t exist, your program should
assume that there are no synonyms.

The readSynonymsFile function is one of the easiest functions you have to write for
this assignment. Each line of the synonyms file consists of two strings separated by an
equal sign. You have to separate the string into its component pieces and put each
synonym-value pair into a JavaScript map, which is then returned as the value of the
function.

Executing commands
Once you have read in the data, you then need to play the game, which is implemented by
the play method. The first thing the play method has to do is to record the fact that the
player always starts in the first room specified in the rooms file, which the code for
readRoomsFile stores in the data structure under the name "START" as well as the
room’s own name. You need to look up "START" in this structure and store the result in a
local variable that records the current room. You also have to maintain a local variable
that records the objects the player is carrying, which starts out as an empty array.

The next step is to distribute the various objects to their starting positions. To do so, you
will need to iterate through the collection of objects, not by position number as you
would in an array, but instead by the name of each object. This operation requires a
different form of the for loop, which is not yet described in the text. If the data structure
for the objects is stored in game.objects, you can cycle through each name by writing a
for loop that looks like this:

Figure 8. The CrowtherSynonyms.txt file

 – 14 –

for (var name in game.objects) {
 var obj = game.objects[name];
 . . . code to work with that object . . .
}

It is important to note that the initial location of an object can be the string "PLAYER",
even though this value is usually a room name. If the initial location is "PLAYER", your
code should add the object to the array of objects the player is carrying.

Once you’ve set everything up, you then need to write the code that allows the player
to move from room to room by entering commands on the console. The process of
reading a command consists of the following steps:

1. Request an input line from the user using console.requestInput.
2. When the callback function specified in requestInput is called, you need to break

the input line up into a verb representing the action and an optional object indicating
the target of that action. In the required parts of the assignment, the object is relevant
only for the TAKE and DROP commands, but your extensions might add other verbs
that take objects as well. You should also convert the words to uppercase and check
your data structures to see if the words are synonyms. For example, if the user types
RELEASE GOLD, your code should change the verb to DROP and the object to NUGGET.

3. Decide what kind of operation the verb represents. If the word appears in the motion
table for some room, then it is a motion verb. In that case, you need to look it up in
the motion table for the current room and see if it leads anywhere from the current
room. If it isn’t a motion verb, the only legal possibilities (outside of any extensions
you write) is that it is one of the six built-in action verbs described in Figure 9: QUIT,
HELP, LOOK, INVENTORY, TAKE, and DROP. If you have an action verb, you have to call
a helper function that implements the appropriate action. In any other case, you need
to tell the user that you don’t understand that word.

Figure 9. The built-in action verbs

 – 15 –

Section 6
Strategy and Tactics

Even though the adventure program is big, the good news is that you do not have to start
from scratch. You have the advantage of starting with a complete program that solves the
entire assignment because each of the classes you need to write is implemented by a
function in AdvMagicStub.js. Your job is simply to replace the stubs with code of your
own. In your final version, you should be able to delete the import lines for both the
"stub" library and "AdvMagicStub.js".

The following suggestions should enable you to complete the program with relatively
little trouble:

• Start as soon as possible. This assignment is due in less than two weeks, which is a

relatively short amount of time for a project of this size. If you wait until the day
before this assignment is due, it will be impossible to finish.

• Get each class working before you start writing the next one. Because the starter
project supplies magic stub implementations for each of the classes you need to write,
you don’t have to get everything working before you can make useful progress. Work
on the classes one at a time, and debug each one thoroughly before moving on to the
next. In most cases, you can even implement the classes one function at a time,
relying on the stub implementation to do the rest of the work. Our suggestion is to
start with readSynonymsFile, which is the easiest method to implement. When you
have that working, you can then go on to implement AdvObject and AdvRoom,
probably in that order. Once you have those working, you can move on to the
implementation of AdvGame itself.

• Use the smaller data files for most of your testing. Don’t try to test new code on the
Crowther data files. These files take time to read in and are complicated only because
of their scale. The Tiny data files are appropriate for the basic functionality, and the
Small data files have examples of the required features. When you finish your
implementation, it makes sense to try the larger data files just to make sure everything
continues to work in the larger context.

• Test your program thoroughly against the handout, the web demos, and the version
that uses the magic stub implementations. When you think you’ve finished, go back
through the handout and make sure that your program meets the requirements stated in
the assignment. Look for special cases in the assignment description and make sure
that your program handles those cases correctly. If you’re unsure about how some
case should be handled, play with the version containing the stub code and make sure
that your program operates in the same way.

 – 16 –

Section 7
Administrative Rules

Project teams
As on the Breakout and Enigma assignments, you are encouraged to work on this
assignment in teams of two, although you are free to work individually as well. Each
person in a two-person team will receive the same grade, although individual late-day
penalties will be assessed as outlined below.

Grading
Given the timing of the quarter, your assignment will be evaluated by your section leader
without an interactive grading session.

Due dates and late days
As noted on the first page of this handout, the final version of the assignment is due on
Wednesday, June 7. You may use late days on this assignment, except that the days are
now calendar days rather than class days (which makes sense given that class isn’t
meeting). If you submit the assignment by 5:00P.M. on Thursday the 8th, you use up one
day late, and so forth. All Adventure assignments, however, must be turned in by
5:00P.M. on Friday, June 9, so that your section leaders will be able to grade it.

On the Adventure assignment, late-day accounts are calculated on an individual basis.
Thus, if you have carefully saved up a late day but your partner has foolishly squandered
his or hers early in the quarter, you would not be penalized if the assignment came in on
Thursday, but your partner would.

