
Jerry Cain and Eric Roberts Handout #15A
CS 106J April 19, 2017

Mechanics of Functions (Addendum)

Mechanics of Functions

Jerry Cain and Eric Roberts
CS 106J

April 19, 2017

(Addendum)

Exercise: Generating Prime Factorizations
•� A more computationally intense problem is to generate the

prime factorization of a positive integer n.

•� An integer is prime if it’s greater than 1 and has no positive
integer divisors other than 1 and itself.

�� 5 is prime: it’s divisible only by 1 and 5.

�� 6 is not prime: it’s divisible by 1, 2, 3, and itself.

•� Some prime factorizations: -> PrimeFactorizations(501, 512)�
501 = 3 * 167�
502 = 2 * 251�
503 = 503�
504 = 2 * 2 * 2 * 3 * 3 * 7�
505 = 5 * 101�
506 = 2 * 11 * 23�
507 = 3 * 13 * 13�
508 = 2 * 2 * 127�
509 = 509�
510 = 2 * 3 * 5 * 17�
511 = 7 * 73�
512 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2�
->�

PrimeFactorizations.js

•� Remember to decompose the problem, not the program.
•� Synthesizing a sequence of prime factorizations is much

easier if you operate as if you have a function that
synthesizes one.

•� Invent a series of milestones that advance you towards
your overall goal. Each milestone should be a small
perturbation to the last fully functional milestone you
successfully implemented.

•� The program you see to the left does something if
constructFactorization produces something.

•� My first milestone? A for loop that prints something on
behalf of all numbers between low and high, inclusive.

•� Invent a placeholder implementation of
constructFactorization that returns a gesture to
what’s ultimately needed, and call it progress towards
your overall goal.

result�

180�n�

first�

factor�

"180 = "�

true�

2�

false�

"180 = 2"�

90�

"180 = 2 * "�"180 = 2 * 2"�

45�

3�

"180 = 2 * 2 * "�"180 = 2 * 2 * 3"�

15�

"180 = 2 * 2 * 3 * "�"180 = 2 * 2 * 3 * 3"�

5�

4�5�

"180 = 2 * 2 * 3 * 3 * "�"180 = 2 * 2 * 3 * 3 * 5"�

1�

PrimeFactorizations.js
Some thought questions and exercises:

•� The solution relies on a single Boolean called first. What problem is first
solving for us?

•� During our trace of constructFactorization(180), factor assumed
the values of 2, 3, 4, and 5. 2, 3, and 5 are prime numbers and therefore qualified
to appear in a factorization? How does the implementation guarantee 4 will never
make an appearance in the returned factorization?

•� What is returned by constructFactorization(1)? How could you have
changed the implementation to return "1 = 1" as a special case return value?

•� Trace through the execution of constructFactorization(363) as we did
for constructFactorization(180).

•� Our implementation relies on a parameter named n to accept a value from the
caller, and then proceeds to destroy n by repeatedly dividing it down to 1. Does
this destruction of n confuse PrimeFactorizations’s for loop? Note that
its counting variable is also named n.

Exercise: Drawing A Checkerboard
•� For the rest of lecture, we’ll collectively design and

decompose (and to the extent we have time, implement) a
graphics program that draws the initial configuration for a
game of checkers.

DrawCheckerboard.js

– 2 –

DrawCheckerboard.js DrawCheckerboard.js

DrawCheckerboard.js DrawCheckerboard.js

DrawCheckerboard.js

